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Tip 79

Meet the Search Command

In this tip, we’ll cover the basics of using the search command, including how
to specify the direction of a search, repeat (or reverse) the last search, and work
with the search history.

Execute a Search

From Normal mode, the /  key brings up Vim’s search prompt. Here we can
enter the pattern, or literal text, that we want to search for. Vim does nothing
until we press the <CR>  key to execute the search. If we press the <Esc>  key
instead, the search prompt will be dismissed and we’ll return to Normal mode.

When we execute a search, Vim scans forward from the current cursor posi-
tion, stopping on the first match that it finds. If nothing is found before the
end of the document, Vim informs us “search hit BOTTOM, continuing at
TOP.” This means that in some circumstances, a forward search can take us
backward. That’s not as disorienting as it might sound. Just remember that
the search command wraps around the document, and it’ll make sense.

If you ever need to search from the current cursor position to the end of the
document without wrapping around, you can disable the ‘wrapscan’ option (see
:h 'wrapscan' ).

Specify the Search Direction

When a search is initiated with the /  key, Vim scans the document forward.
If we use the ?  key to bring up the search prompt, Vim searches backward
instead. The search prompt always begins with either the / or ? character,
which indicates in what direction the search will scan.

Repeat the Last Search

The n  command jumps to the next match, and the N  command jumps to the
previous match. We can easily navigate between matches in the current
document with the n  and N  commands. But the definition of “next match”
depends on context.

The n command preserves the direction as well as any offsets that were applied
to the previous search (we’ll meet offsets in Tip 83, on page ?). So if we exe-
cute a forward search using / , then n  will continue searching forward.
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Whereas if we used ?  for the original search, then n  will continue backward.
Meanwhile, the N  command always goes in the opposite direction from the
last search.

Sometimes we might want to repeat a search using the same pattern but
changing the direction or offset. In this case, it’s useful to know that if we
execute a search without providing a pattern, Vim will just reuse the pattern
from the previous search. Table 22, Options for Repeating a Search, on page
7 summarizes the matrix of options for repeating a search:

Suppose that we use ?  to initiate a search. Having jumped backward to the
previous match, we then decide that we want to skip forward through the
remainder of the matches. We could do it with the N  key, but somehow that
makes everything feel upside down. Instead, we could execute /<CR> . This
executes a forward search, reusing the same pattern. Now, we can use the n
key to skip forward through the rest of the matches in the document.

In Tip 84, on page ?, we’ll meet a more complex example where we change
the offset each time we repeat a search.

Recall Historical Searches

Vim records our search patterns so we can easily recall them. When the search
prompt is visible, we can scroll through the previous searches by pressing
the <Up>  key. In fact, the interface for browsing the search history is just the
same as for browsing the command-line history. We covered this in more
depth in Tip 34, on page ?. We’ll put these techniques into action in Tip 85,
on page ?.

Tip 80

Highlight Search Matches

Vim can highlight search matches, but this feature is not enabled by default.
Learn how to enable it, and (just as importantly) how to mute it for those times
when the highlighting takes over.

The search command allows us to jump quickly between matches, but by
default, Vim does nothing to make them stand out visually. We can fix this
by enabling the ‘hlsearch’ option, (see :h 'hlsearch' ), which causes all matches
to be highlighted throughout the active document as well as in any other open
split windows.
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EffectCommand

Jump to next match, preserving direction and offsetn

Jump to previous match, preserving direction and offsetN

Jump forward to next match of same pattern/<CR>

Jump backward to previous match of same pattern?<CR>

Table 22—Options for Repeating a Search

Mute Search Highlighting

Search highlighting is a useful feature, but sometimes it can make itself
unwelcome. If we search for a common string, for example, or a pattern with
hundreds of matches, we’ll soon find that our workspace is riddled with yellow
(or whatever hue the active color scheme uses).

In this scenario, we could run :set nohlsearch to disable the feature entirely (:se
nohls and :se hls! also work). But when we come to execute another search, we
might wish to reenable the feature again.

Vim has a more elegant solution. The :nohlsearch command can be used to mute
the search highlighting temporarily (see :h :noh ). It will stay muted until the
next time you execute a new or repeat search command. See Create a Shortcut
to Mute Highlighting, on page 7, for a suggested mapping.

Create a Shortcut to Mute Highlighting

Typing :noh<CR>  to mute search highlighting is laborious. We can speed things up by
creating a mapping such as this:

nnoremap <silent> <C-l> :<C-u>nohlsearch<CR><C-l>

Normally, <C-l>  clears and redraws the screen (see :h CTRL-L ). This mapping builds
on top of the usual behavior by muting search highlighting.

Tip 81

Preview the First Match Before Execution

Vim’s search command is much more useful when the incremental search feature
is enabled. Here are a couple of ways that this option can improve your work-
flow.
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By default, Vim sits idle as we prepare our search pattern, only springing into
action when we press <CR> . My favorite enhancement is enabled with the
‘incsearch’ setting (see :h 'incsearch' ). This tells Vim to show a preview of the
first match based on what has been entered so far into the search field. Each
time we enter another character, Vim instantly updates the preview. This
table illustrates how it works:

Buffer ContentsKeystrokes

{start} The car was the color of a carrot.

/car The car was the color of a carrot.

/carr The car was the color of a carrot.

/carr<CR> The car was the color of a carrot.

After typing “car” into the search field, Vim highlights the first match, which
in this case is the word “car” itself. As soon as we enter the next “r” character,
our preview ceases to match, and Vim skips forward to the next matching
word. This time, it’s “carrot.” If we were to press the <Esc>  key at this point,
the search prompt would be dismissed and our cursor restored to its original
position at the start of the line. But instead, we press <CR>  to execute the
command, causing our cursor to jump to the start of the word “carrot.”

This instant feedback lets us know when we’ve hit our target. If our intention
was simply to move the cursor to the start of the word “carrot,” then there’s
no need to type the full word into the search field. In this case, /carr<CR>  is
enough. Without the ‘incsearch’ feature enabled, we wouldn’t know whether or
not our pattern would hit the target until we executed the search.

Check for the Existence of a Match

In our example, we have two partial matches for “car” on the same line. But
imagine if the words “car” and “carrot” were separated by several hundred
words. When we updated our search field from “car” to “carr,” Vim would
have to scroll the document to bring the word “carrot” into view. And that is
exactly what happens.

Suppose that we just want to check if the word “carrot” is present in the
current document without moving our cursor. With the ‘incsearch’ option
enabled, we would simply have to dial up the search prompt and then type
as many characters of the word “carrot” as it takes to bring the first occurrence
of the word into view. If the word is found, we can just press <Esc> , and we’ll
end up right back where we started. No need to interrupt our train of thought.
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Autocomplete the Search Field Based on Preview Match

In that last example, we executed the search command before completing the
word “carrot.” That’s good enough if our intention was simply to move our
cursor to the first match. But suppose that we needed our pattern to match
the entire word “carrot”: for example, if we were planning to follow the search
command with a substitute command.

Of course, we could simply type out the “carrot” in full. But here’s a handy
shortcut: <C-r><C-w> . This autocompletes the search field using the remainder
of the current preview match. If we used this command after entering “carr”
into the search field, it would append “ot,” causing the match to encompass
the entire word “carrot.”

Note that the <C-r><C-w>  autocompletion is slightly brittle in this context. If
you prefix your search with the \v item, then <C-r><C-w>  will complete the entire
word under the cursor (creating /\vcarrcarrot<CR> , for example) instead of the
remainder of the word. As long as you are searching for words and not
patterns, the autocomplete feature of incremental search can be a nice little
time-saver.

Tip 82

Count the Matches for the Current Pattern

This quick tip shows how to count the number of matches for a pattern.

There’s no way of making the search command report the number of matches
in the current document. But here’s a command that does:

:%s///gn➾
117 matches on 65 lines❮

We’re actually calling the :substitute command, but the n flag suppresses the
usual behavior. Instead of replacing each match with the target, it simply
counts the number of matches and then echoes the result below the command
line. By leaving the search field blank, we instruct Vim to use the current
search pattern. The replacement field is ignored anyway (because of the n
flag), so we can leave it blank too.

Whatever you do, don’t omit any of the / characters. Running :%s//gn would
replace every match with “gn”! If it seems like too much typing, you might
want to create a mapping for it. I’ll leave this as an exercise for you.
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