
Extracted from:

Practical Vim, Second Edition
Edit Text at the Speed of Thought

This PDF file contains pages extracted from Practical Vim, Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Practical Vim, Second Edition
Edit Text at the Speed of Thought

Drew Neil

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Cathleen Small (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-127-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—January 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Tip 56

Traverse the Jump List

Vim records our location before and after making a jump and provides a couple
of commands for retracing our steps.

In web browsers, we’re used to using the back button to return to pages that
we visited earlier. Vim provides a similar feature by way of the jump list: the
<C-o> command is like the back button, while the complementary <C-i> com-
mand is like the forward button. These commands allow us to traverse Vim’s
jump list, but what exactly is a jump?

Let’s start by making this distinction: motions move around within a file,
whereas jumps can move between files (although we’ll soon see that some
motions are also classified as jumps). We can inspect the contents of the jump
list by running this command:

:jumps➾

jump line col file/text❮

4 12 2 <recipe id="sec.jump.list">
3 114 2 <recipe id="sec.change.list">
2 169 2 <recipe id="sec.gf">
1 290 2 <recipe id="sec.global.marks">

>
Press Enter or type command to continue

Any command that changes the active file for the current window can be
described as a jump. In the jump list, Vim records the cursor location before
and after running such a command. For example, if we run the :edit command
to open a new file (see Tip 42,Open a File by Its Filepath Using ‘:edit’, on page
?), then we can use the <C-o> and <C-i> commands to jump back and forth
between the two files.

Moving directly to a line number with [count]G counts as a jump, but moving
up or down one line at a time does not. The sentence-wise and paragraph-
wise motions are jumps, but the character-wise and word-wise motions are
not. As a rule of thumb, we could say that long-range motions may be classi-
fied as a jump, but short-range motions are just motions.

This table summarizes a selection of jumps:

EffectCommand

Jump to line number[count]G

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

EffectCommand

Jump to next/previous occurrence of pattern/pattern<CR>/?pattern<CR>/n/N

Jump to matching parenthesis%

Jump to start of previous/next sentence(/)

Jump to start of previous/next paragraph{/}

Jump to top/middle/bottom of screenH/M/L

Jump to file name under the cursorgf

Jump to definition of keyword under the cursor<C-]>

Jump to a mark’{mark}/`{mark}

The <C-o> and <C-i> commands themselves are never treated as a motion.
This means that we can’t use them to extend the reach of a Visual mode
selection, nor can we use them in Operator-Pending mode. I tend to think of
the jump list as a breadcrumb trail that makes it easy to retrace my steps
through the files that I’ve visited during the course of an editing session.

Vim can maintain multiple jump lists at the same time. In fact, each separate
window has its own jump list. If we’re using split windows or multiple tab
pages, then the <C-o> and <C-i> commands will always be scoped to the jump
list of the active window.

Beware of Mapping the Tab Key

Try pressing <C-i> in Insert mode, and you should find that it has the same effect as
pressing the <Tab> key. That’s because Vim sees <C-i> and <Tab> as the same thing.

Beware that if you attempt to create a mapping for the <Tab> key, it will also be trig-
gered when you press <C-i> (and vice versa). That may not seem like a problem, but
consider this: if you map the <Tab> key to something else, it will overwrite the default
behavior of the <C-i> command. Think carefully about whether that’s a worthwhile
trade-off. The jump list is much less useful if you can only traverse it in one direction.

Tip 57

Traverse the Change List

Vim records the location of our cursor after each change we make to a document.
Traversing this change list is simple and can be the quickest way to get where
we want to go.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Have you ever used the undo command followed immediately by redo? The
two commands cancel each other out, but they have the side effect of placing
the cursor on the most recent change. That could be useful if we wanted to
jump back to the part of the document that we edited most recently. It’s a
hack, but u<C-r> gets us there.

It turns out that Vim maintains a list of the modifications we make to each
buffer during the course of an editing session. It’s called the change list (see
:h changelist), and we can inspect its contents by running the following:

:changes➾

change line col text❮

3 1 8 Line one
2 2 7 Line two
1 3 9 Line three

>
Press ENTER or type command to continue

This example output shows that Vim records the line and column number
for each change. Using the g; and g, commands, we can traverse backward
and forward through the change list. As a memory aid for g; and g, , it may
help to remember that the ; and , commands can be used to repeat or reverse
the f{char} command (see Tip 50,Find by Character, on page ?).

To jump back to the most recent modification in the document, we press g; .
That places the cursor back on the line and column where it ended up after
the previous edit. The result is the same as if we had pressed u<C-r> , except
that we don’t make any transitory changes to the document.

Marks for the Last Change
Vim automatically creates a couple of marks that complement the change
list. The `. mark always references the position of the last change (:h `.),
while the `^ mark tracks the position of the cursor the last time that Insert
mode was stopped (:h `^).

In most scenarios, jumping to the `. mark has the same effect as the g;
command. Whereas the mark can only refer to the position of the most recent
change, the change list stores multiple locations. We can press g; again and
again, and each time it takes us to a location that was recorded earlier in the
change list. The `. , on the other hand, will always take us to the last item in
the change list.

The `^ mark references the last insertion, which is slightly more specific than
the last change. If we leave Insert mode and then scroll around the document,
we can quickly carry on where we left off by pressing gi (:h gi). In a single

• Click HERE to purchase this book now. discuss

Traverse the Change List • 7

http://vimhelp.appspot.com/motion.txt.html#changelist
http://vimhelp.appspot.com/motion.txt.html#%2560.
http://vimhelp.appspot.com/motion.txt.html#%2560%255E
http://vimhelp.appspot.com/insert.txt.html#gi
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

move, that uses the `^ mark to restore the cursor position and then switches
back into Insert mode. It’s a great little time saver!

Vim maintains a change list for each individual buffer in an editing session.
By contrast, a separate jump list is created for each window.

Tip 58

Jump to the Filename Under the Cursor

Vim treats filenames in our document as a kind of hyperlink. When configured
properly, we can use the gf command to go to the filename under the cursor.

Let’s demonstrate with the jumps directory, from the source files distributed
with this book. It contains the following directory tree:

practical_vim.rb
practical_vim/

core.rb
jumps.rb
more.rb
motions.rb

In the shell, we’ll start by changing to the jumps directory and then launching
Vim. For this demonstration, I recommend using the -u NONE -N flags to ensure
that Vim starts up without loading any plugins:

$ cd code/jumps➾

$ vim -u NONE -N practical_vim.rb➾

The practical_vim.rb file does nothing more than load the contents of the core.rb
and more.rb files:

jumps/practical_vim.rb
require 'practical_vim/core'
require 'practical_vim/more'

Wouldn’t it be useful if we could quickly inspect the contents of the file
specified by the require directive? That’s what Vim’s gf command is for. Think
of it as go to file (:h gf).

Let’s try it out. We’ll start by placing our cursor somewhere inside the 'practi-
cal_vim/core' string (for example, pressing fp would get us there quickly). If we
try using the gf command now, we get this error: “E447: Can’t find file
‘practical_vim/core’ in path.”

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dnvim2/code/jumps/practical_vim.rb
http://vimhelp.appspot.com/editing.txt.html#gf
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Vim tries to open a file called practical_vim/core and reports that it doesn’t exist,
but there is a file called practical_vim/core.rb (note the file extension). Somehow
we need to instruct Vim to modify the filepath under the cursor by appending
the .rb file extension before attempting to open it. We can do this with the
‘suffixesadd’ option.

Specify a File Extension
The ‘suffixesadd’ option allows us to specify one or more file extensions, which
Vim will attempt to use when looking up a filename with the gf command
(:h 'suffixesadd'). We can set it up by running this command:

:set suffixesadd+=.rb➾

Now when we use the gf command, Vim jumps directly to the filepath under
the cursor. Try using it to open more.rb. In that file, you’ll find a couple of
other require declarations. Pick one, and open it up using the gf command.

Each time we use the gf command, Vim adds a record to the jump list, so
we can always go back to where we came from using the <C-o> command (see
Tip 56,Traverse the Jump List, on page 5). In this case, pressing <C-o> the
first time would take us back to more.rb, and pressing it a second time would
take us back to practical_vim.rb.

Specify the Directories to Look Inside
In this example, each of the files referenced with the require statement was
located relative to the working directory. But what if we referenced function-
ality that was provided by a third-party library, such as a rubygem?

That’s where the ‘path’ option comes in (:h 'path'). We can configure this to
reference a comma-separated list of directories. When we use the gf command,
Vim checks each of the directories listed in ‘path’ to see if it contains a filename
that matches the text under the cursor. The ‘path’ setting is also used by the
:find command, which we covered in Tip 43,Open a File by Its Filename Using
‘:find’, on page ?.

We can inspect the value of the path by running this command:

:set path?➾

path=.,/usr/include,,❮

In this context, the . stands for the directory of the current file, whereas the
empty string (delimited by two adjacent commas) stands for the working
directory. The default settings work fine for this simple example, but for a

• Click HERE to purchase this book now. discuss

Jump to the Filename Under the Cursor • 9

http://vimhelp.appspot.com/options.txt.html#%27suffixesadd%27
http://vimhelp.appspot.com/options.txt.html#%27path%27
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

larger project we would want to configure the ‘path’ setting to include a few
more directories.

For example, it would be useful if the ‘path’ included the directories for all
rubygems used in a Ruby project. Then we could use the gf command to
open up the modules referenced by any require statements. For an automated
solution, check out Tim Pope’s bundler.vim plugin,1 which uses the project
Gemfile to populate the ‘path’ setting.

Discussion
In the setup for this tip, I recommended launching Vim with plugins disabled.
That’s because Vim is usually distributed with a Ruby file-type plugin, which
handles the setup of ‘suffixesadd’ and ‘path’ options for us. If you do a lot of work
with Ruby, I recommend getting the latest version of the file-type plugin from
github because it’s actively maintained.2

The ‘suffixesadd’ and ‘path’ options can be set locally for each buffer, so they can
be configured in different ways for different file types. Vim is distributed with
file-type plugins for many languages besides Ruby, so in practice you won’t
often have to set these options yourself. Even so, it’s worth understanding
how the gf command works. It makes each filepath in our document behave
like a hyperlink, which makes it easier to navigate through a codebase.

The <C-]> command has a similar role. It also requires a bit of setup (as dis-
cussed in Tip 103,Configure Vim to Work with ctags, on page ?), but when
it’s correctly configured, it allows us to jump from any method invocation
directly to the place where it was defined. Skip ahead to Tip 104,Navigate
Keyword Definitions with Vim's Tag Navigation Commands, on page ?, for a
demonstration.

While the jump list and change list are like breadcrumb trails that allow us
to retrace our steps, the gf and <C-]> commands provide wormholes that
transport us from one part of our codebase to another.

1. https://github.com/tpope/vim-bundler
2. https://github.com/vim-ruby/vim-ruby

• 10

• Click HERE to purchase this book now. discuss

https://github.com/tpope/vim-bundler
https://github.com/vim-ruby/vim-ruby
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

