
Extracted from:

Practical Vim, Second Edition
Edit Text at the Speed of Thought

This PDF file contains pages extracted from Practical Vim, Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Practical Vim, Second Edition
Edit Text at the Speed of Thought

Drew Neil

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Cathleen Small (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-127-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—January 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Tip 1

Meet the Dot Command

The dot command lets us repeat the last change. It is the most powerful and
versatile command in Vim.

Vim’s documentation simply states that the dot command “repeats the last
change” (see :h .). It doesn’t sound like much, but in that simple definition
we’ll find the kernel of what makes Vim’s modal editing model so effective.
First we have to ask, “What is a change?”

To understand the power of the dot command, we have to realize that the
“last change” could be one of many things. A change could act at the level of
individual characters, entire lines, or even the whole file.

To demonstrate, we’ll use this snippet of text:

the_vim_way/0_mechanics.txt
Line one
Line two
Line three
Line four

The x command deletes the character under the cursor. When we use the
dot command in this context, “repeat last change” tells Vim to delete the
character under the cursor:

Buffer ContentsKeystrokes

{start} Line one
Line two
Line three
Line four

x ine one
Line two
Line three
Line four

. ne one
Line two
Line three
Line four

.. one
Line two
Line three
Line four

• Click HERE to purchase this book now. discuss

http://vimhelp.appspot.com/repeat.txt.html#.
http://media.pragprog.com/titles/dnvim2/code/the_vim_way/0_mechanics.txt
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

We can restore the file to its original state by pressing the u key a few times
to undo the changes.

The dd command also performs a deletion, but this one acts on the current
line as a whole. If we use the dot command after dd , then “repeat last change”
instructs Vim to delete the current line:

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Buffer ContentsKeystrokes

{start} Line one
Line two
Line three
Line four

dd Line two
Line three
Line four

. Line three
Line four

Finally, the >G command increases the indentation from the current line until
the end of the file. If we follow this command with the dot command, then
“repeat last change” tells Vim to increase the indentation level from the current
position to the end of the file. In this example, we’ll start with the cursor on
the second line to highlight the difference

Buffer ContentsKeystrokes

{start} Line one
Line two
Line three
Line four

>G Line one
Line two
Line three
Line four

j Line one
Line two
Line three
Line four

. Line one
Line two
Line three
Line four

j. Line one
Line two
Line three

Line four

The x , dd , and > commands are all executed from Normal mode, but we also
create a change each time we dip into Insert mode. From the moment we
enter Insert mode (by pressing i , for example) until we return to Normal mode
(by pressing <Esc>), Vim records every keystroke. After making a change such
as this, the dot command will replay our keystrokes (see Moving Around in
Insert Mode Resets the Change, on page ?, for a caveat).

• Click HERE to purchase this book now. discuss

Meet the Dot Command • 3

http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

The Dot Command Is a Micro Macro
Later, in Chapter 11, Macros, on page ?, we’ll see that Vim can record any
arbitrary number of keystrokes to be played back later. This allows us to
capture our most repetitive workflows and replay them at a keystroke. We
can think of the dot command as being a miniature macro, or a “micro” if
you prefer.

We’ll see a few applications of the dot command throughout this chapter.
We’ll also learn a couple of best practices for working with the dot command
in Tip 9,Compose Repeatable Changes, on page ?, and Tip 23,Prefer Operators
to Visual Commands Where Possible, on page ?.

Tip 2

Don’t Repeat Yourself

For such a common use case as appending a semicolon at the end of a series
of lines, Vim provides a dedicated command that combines two steps into one.

Suppose that we have a snippet of JavaScript code like this:

the_vim_way/2_foo_bar.js
var foo = 1
var bar = 'a'
var foobar = foo + bar

We need to append a semicolon at the end of each line. Doing so involves
moving our cursor to the end of the line and then switching to Insert mode
to make the change. The $ command will handle the motion for us, and then
we can run a ;<Esc> to make the change.

To finish the job, we could run the exact same sequence of keystrokes on the
next two lines, but that would be missing a trick. The dot command will repeat
that last change, so instead of duplicating our efforts, we could just run j$.
twice. One keystroke (.) buys us three (a ;<Esc>). It’s a small saving, but these
efficiencies accumulate when repeated.

But let’s take a closer look at this pattern: j$. . The j command moves the
cursor down one line, and then the $ command moves it to the end of the
line. We’ve used two keystrokes just to maneuver our cursor into position so
that we can use the dot command. Do you sense that there’s room for
improvement here?

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dnvim2/code/the_vim_way/2_foo_bar.js
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Reduce Extraneous Movement
While the a command appends after the current cursor position, the A com-
mand appends at the end of the current line. It doesn’t matter where our
cursor is at the time, pressing A will switch to Insert mode and move the
cursor to the end of the line. In other words, it squashes $a into a single
keystroke. In Two for the Price of One, on page 6, we see that Vim has a
handful of compound commands.

Here is a refinement of our previous example:

Buffer ContentsKeystrokes

{start} var foo = 1
var bar = 'a'
var foobar = foo + bar

A ;<Esc> var foo = 1;
var bar = 'a'
var foobar = foo + bar

j var foo = 1;
var bar = 'a'
var foobar = foo + bar

. var foo = 1;
var bar = 'a';
var foobar = foo + bar

j. var foo = 1;
var bar = 'a';
var foobar = foo + bar;

By using A instead of $a , we give the dot command a boost. Instead of having
to position the cursor at the end of the line we want to change, we just have
to make sure it is somewhere (anywhere!) on that line. Now we can repeat
the change on consecutive lines just by typing j. as many times as it takes.

One keystroke to move, another to execute. That’s about as good as it gets!
Watch for this pattern of usage, because we’ll see it popping up in a couple
more examples.

Although this formula looks terrific for our short example, it’s not a universal
solution. Imagine if we had to append a semicolon to fifty consecutive lines.
Pressing j. for each change starts to look like a lot of work. For an alternative
approach, skip ahead to Tip 30,Run Normal Mode Commands Across a Range,
on page ?.

• Click HERE to purchase this book now. discuss

Don’t Repeat Yourself • 5

http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Two for the Price of One

We could say that the A command compounds two actions ($a) into a single keystroke.
It’s not alone in doing this. Many of Vim’s single-key commands can be seen as a
condensed version of two or more other commands. The table below shows an
approximation of some examples. Can you identify anything else that they all have
in common?

Equivalent in LonghandCompound Command

c$C

cls

^CS

^iI

$aA

A<CR>o

koO

If you catch yourself running ko (or worse, k$a<CR>), stop! Think about what you’re
doing. Then recognize that you could have used the O command instead.

Did you identify the other property that these commands share? They all switch from
Normal to Insert mode. Think about that and how it might affect the dot command.

Tip 3

Take One Step Back, Then Three Forward

We can pad a single character with two spaces (one in front, the other behind)
by using an idiomatic Vim solution. At first it might look slightly odd, but the
solution has the benefit of being repeatable, which allows us to complete the
task effortlessly.

Suppose that we have a line of code that looks like this:

the_vim_way/3_concat.js
var foo = "method("+argument1+","+argument2+")";

Concatenating strings in JavaScript never looks pretty, but we could make
this a little easier on the eye by padding each + sign with spaces to make it
look like this:

var foo = "method(" + argument1 + "," + argument2 + ")";

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dnvim2/code/the_vim_way/3_concat.js
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Make the Change Repeatable
This idiomatic approach solves the problem:

Buffer ContentsKeystrokes

{start} var foo = "method("+argument1+","+argument2+")";

f+ var foo = "method("+argument1+","+argument2+")";

s␣+␣<Esc> var foo = "method(" + argument1+","+argument2+")";

; var foo = "method(" + argument1+","+argument2+")";

. var foo = "method(" + argument1 + ","+argument2+")";

;. var foo = "method(" + argument1 + "," + argument2+")";

;. var foo = "method(" + argument1 + "," + argument2 + ")";

The s command compounds two steps into one: it deletes the character under
the cursor and then enters Insert mode. Having deleted the + sign, we then
type ␣+␣ and leave Insert mode.

One step back and then three steps forward. It’s a strange little dance that
might seem unintuitive, but we get a big win by doing it this way: we can
repeat the change with the dot command; all we need to do is position our
cursor on the next + symbol, and the dot command will repeat that little
dance.

Make the Motion Repeatable
There’s another trick in this example. The f{char} command tells Vim to look
ahead for the next occurrence of the specified character and then move the
cursor directly to it if a match is found (see :h f). So when we type f+ , our
cursor goes straight to the next + symbol. We’ll learn more about the f{char}
command in Tip 50,Find by Character, on page ?.

Having made our first change, we could jump to the next occurrence by
repeating the f+ command, but there’s a better way. The ; command will
repeat the last search that the f command performed. So instead of typing
f+ four times, we can use that command once and then follow up by using
the ; command three times.

All Together Now
The ; command takes us to our next target, and the . command repeats the
last change, so we can complete the changes by typing ;. three times. Does
that look familiar?

• Click HERE to purchase this book now. discuss

Take One Step Back, Then Three Forward • 7

http://vimhelp.appspot.com/motion.txt.html#f
http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

Instead of fighting Vim’s modal input model, we’re working with it, and look
how much easier it makes this particular task.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dnvim2
http://forums.pragprog.com/forums/dnvim2

