
Extracted from:

Build Chatbot Interactions
Responsive, Intuitive Interfaces with Ruby

This PDF file contains pages extracted from Build Chatbot Interactions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Build Chatbot Interactions
Responsive, Intuitive Interfaces with Ruby

Daniel Pritchett

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Tammy Coron
Copy Editor: Paula Robertson
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-632-7
Book version: P1.0—June 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 8

Bot Task Scheduler
There are times when you need to crack open Lita’s internals and change
some core behavior. In this chapter, you’ll serialize a user’s Lita command as
a plain Ruby hash and then replay that serialized command through Lita in
the future. You’ll also use Lita’s built-in Redis persistence layer to manage
the schedule itself.

The skill you’ll build in this chapter is a complex chatbot integration that
allows you to defer any of your other Lita skills with a work scheduler.

Capture a Lita Command to Reuse Later
To capture a Lita command, you need to stub out three routes. The main
route captures a message, while the other two manage the scheduled mes-
sages, one to show the list and the other to empty it out.

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
route(/^schedule\s+"(.+)"\s+in\s+(.+)$/i, :schedule_command, command: true)
route(/^show schedule$/i, :show_schedule, command: true)
route(/^empty schedule$/i, :empty_schedule, command: true)

The expected use for each of the three routes is as follows:

> Lita schedule "double 2" in 5 seconds
> Lita show schedule
> Lita empty schedule

The first route uses a regular expression to capture all of the text between a
pair of quotes: "(.+)"; this is the command Lita stores to reissue in the future.
A second capture in the same regular expression represents the time when
the command is expected to be reissued. The other two routes are plain
commands that don’t require the capture of any metadata, which makes them
comparatively easier to capture.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

Confirm that each of these three routes matches as expected with some
routing specs:

lita-task-scheduler/spec/lita/handlers/task_scheduler_spec.rb
describe 'routing' do

it { is_expected.to route('Lita schedule "double 4" in 2 hours') }
it { is_expected.to route('Lita show schedule') }
it { is_expected.to route('Lita empty schedule') }

end

Be aware, the schedule route is likely to feel brittle to your end users—not
everyone will remember the “lita schedule (double quotes here) (delayed
command here) (another double quote)” syntax. But you can keep an eye out
for common command failures to see whether you can bake those in as
alternative routes. Discoverability and the principle of least astonishment1

are key to an enjoyable chatbot user experience.

Extract content from an incoming message
The next two sections are rather messy because they require you to crack
open a Lita Message object, pull out its key elements, and keep them on ice
until you’re ready to rebuild a new Message that smells and tastes like the
original. Since quite a bit of code is required to stitch all of this together,
you’ll see only the key methods in this chapter. The full implementation is
available in the lita-bot-task-scheduler folder in the source code listings that
ship with this book.

In the meantime, start with the following method for scheduling commands.

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
def schedule_command(payload)

task, timing = payload.matches.last
run_at = parse_timing(timing)
serialized = command_to_hash(payload.message, new_body: task)

defer_task(serialized, run_at)
show_schedule payload

end

This method takes an incoming Lita command with a :schedule_command method
and parses the user’s command into a task—the thing you want to do—and a
timing—when you want to do it, represented by how far in the future you want
Lita to perform this task. The timing interpretation parse_timing method, and
the storage of the user’s intent as a resubmittable command, are managed
by command_to_hash.

1. https://en.wikipedia.org/wiki/Principle_of_least_astonishment

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/spec/lita/handlers/task_scheduler_spec.rb
http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

The parse_timing logic is purposefully simplistic.

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
def parse_timing(timing)

count, unit = timing.split
count = count.to_i
unit = unit.downcase.strip.gsub(/s$/, '')

seconds = case unit
when 'second'

count
when 'minute'

count * 60
when 'hour'

count * 60 * 60
when 'day'

count * 60 * 60 * 24
else

raise ArgumentError, "I don't recognize #{unit}"
end

Time.now.utc + seconds
end

You take in a string that looks like “5 seconds” or “3 days” and you reduce it
to a specific number of seconds from now. The return value is the computed
UTC time when your task is expected to execute. Storing timestamps in UTC
is handy when you’re building logic around timestamps retrieved from a
database. If you don’t specify UTC, you may find that your database assumes
everything is in its local time (say, Chicago time), while your application is
running on a server that’s set to a different time zone. Things get hairy pretty
quickly when your application thinks a timestamp means one thing, but the
database stores it as something else—retrieving a record later can end up
with an unwanted time offset sneaking in on you.

The time parsing tests are a little easier to read than the implementation—you
assert that the future time computed by inputs like “2 weeks” and “1 day”
are within a fraction of a second’s tolerance of the timestamp you’d expect
them to be.

Capture Lita’s Message object intent for reuse
The next method captures and stores the essence of a Lita Message object
for reuse.

• Click HERE to purchase this book now. discuss

Capture a Lita Command to Reuse Later • 7

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
def command_to_hash(command, new_body: nil)

{
user_name: command.user.name,
room_name: command.source.room,
body: new_body || command.body

}
end

Note that the command parameter is the original Message object captured by the
scheduler route. The goal is to figure out who sent this, in which channel,
and what exactly they wanted it to do.

The new_body parameter allows you to keep only the interesting part of a
scheduled task command—the actual task itself—and not the scheduling
metadata: schedule "double 2" in 5 seconds becomes double 2.

Send an extracted task to your scheduler
The serialized command intent is now ready to be shipped off to Lita’s Redis
datastore for future reuse.

Here’s the defer_task method your handler depends on to store this intent:

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
def defer_task(serialized_task, run_at)

scheduler.add(serialized_task, run_at)
end

And here are some specs to outline what’s expected from the last few methods:

lita-task-scheduler/spec/lita/handlers/task_scheduler_spec.rb
describe ':defer_task' do

it 'defers any single task' do
message = { canary_message: Time.now }
run_at = Time.now + 5
result = subject.defer_task(message, run_at)
expect(result).to include(message)

end

it 'stores multiple same-second tasks in an array' do
message = { 'canary_message' => Time.now.to_i }
run_at = Time.now + 5

5.times do
subject.defer_task(message, run_at)

end

result = subject.defer_task(message, run_at)

expect(result).to eq([message] * 6)
end

end

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/spec/lita/handlers/task_scheduler_spec.rb
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

The actual Redis-wrapping code for storing and retrieving these schedules is
in the final section of this chapter. Skip ahead if you’re curious.

Resubmit a Deferred Lita Command
Excellent, the scene is set. The user issues a Lita command to run a few
minutes or hours from now, and that command is safely tucked away in
Redis. Now, you’ll want to keep an eye on the schedule to pull out tasks as
they’re ready. You can do this with a schedule-checking loop that ticks once
a second.

Tick through a schedule checking loop
The run_loop method, shown next, is wired up by Lita at boot time using the
:loaded event.

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
def run_loop

Thread.new do
loop do
tick
sleep 1

end
end

end

def tick
tasks = find_tasks_due
tasks.each { |t| resend_command t }
Lita.logger.debug "Task loop done for #{Time.now}"

end

on(:loaded) { run_loop }

“On loaded” sends off your run_loop method to a new background thread so
that Lita can listen to user input immediately; the scheduler would otherwise
block the main thread and render the bot unusable. The tick method calls out
to the scheduler object to see whether any tasks are due right now or in the
immediate past. Any tasks it finds are sent on to the resend_command method.

You can use a test to confirm that the tick method resends any eligible tasks
it discovers.

lita-task-scheduler/spec/lita/handlers/task_scheduler_spec.rb
describe 'tick' do

before { subject.stub(:find_tasks_due).and_return ['a_task'] }

• Click HERE to purchase this book now. discuss

Resubmit a Deferred Lita Command • 9

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/spec/lita/handlers/task_scheduler_spec.rb
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

it 'should find tasks due and resend them' do
expect(subject).to receive(:find_tasks_due)
expect(subject).to receive(:resend_command).with('a_task')

subject.tick
end

end

Resend a command to execute now
The resend command method cracks into Lita’s innards more than is usual
for this book.

lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
def resend_command(command_hash)

user = Lita::User.new(command_hash.fetch('user_name'))
room = Lita::Room.new(command_hash.fetch('room_name'))
source = Lita::Source.new(user: user, room: room)
body = "#{robot.name} #{command_hash.fetch('body')}"

newmsg = Lita::Message.new(
robot,
body,
source

)

robot.receive newmsg
end

You already know the originating user and source channel for the required
task. Creating new User, Room, and Source objects lets Lita prepare to resend
the message as if it were brand new. The robot.receive command accepts the
newly recreated message, and Lita executes the command immediately.

In the next section, you’ll double back to revisit the Scheduler object, which has
been hiding most of the complexity of the Redis integration and your schedule
data structures until now.

Store Scheduled Tasks in Redis
This module crystallizes the core requirements of the scheduler:

• Add a specific task to the schedule datastore with a specific future
timestamp, for example, “double 2,” “in 4 minutes.”

• Check the schedule datastore to see whether any tasks have past-due
timestamps.

You need to set the stage for storing tasks with a new Lita::Scheduler class that
announces its intent to work with a specific Redis hash data structure stored
in a location with a relevant name.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/handlers/task_scheduler.rb
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

lita-task-scheduler/lib/lita/scheduler.rb
module Lita

class Scheduler
REDIS_TASKS_KEY = name.to_s

def initialize(redis:, logger:)
@redis = redis
@logger = logger

end

attr_reader :redis, :logger

def get_all
redis.hgetall(REDIS_TASKS_KEY)

end

Note the auto-generated hash key name for storing everything in a single
Redis hash. The get_all call simply wraps up the task scheduler skill’s need to
list absolutely everything for schedule reporting purposes.

Store a new schedule item in Redis
To store a schedule item, you need to design a data structure suitable for
holding lists of scheduled tasks, ordered by timestamp. The plan is to use a
hash object using integer timestamps as keys. Each timestamp’s values will
be arrays of serialized messages.

Here’s a sketch of a single command being stored in Redis:

> lita schedule "double 2" in 2 seconds

That command can be represented as follows:

> example_command = {
user: 'author',
room: 'example',
command: 'double 2'

}

This is the only command you’re scheduling to run two seconds from now,
so you store it inside an array with a single member—this serialized command.

The current time can be represented as the number of seconds since the Unix
epoch2 on January 1st, 1970:

> key_time = Time.now.to_i + 2
1523926393

2. https://en.wikipedia.org/wiki/Unix_time

• Click HERE to purchase this book now. discuss

Store Scheduled Tasks in Redis • 11

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/scheduler.rb
https://en.wikipedia.org/wiki/Unix_time
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

Two seconds from now is 1523926393 in Unix time. This gives you everything
you need to store the schedule for that particular second in Redis:

redis.hset(REDIS_TASKS_KEY, key_time.to_s, [example_command])

At this point, your task’s key hash in Redis looks like this:

{
"1523926393" => [

{
user: 'author',
room: 'example',
command: 'double 2'

}
]

}

Now, look at the Scheduler#add method:

lita-task-scheduler/lib/lita/scheduler.rb
def add(payload, timestamp)

key_time = timestamp.to_i.to_s

redis.watch(REDIS_TASKS_KEY)

tasks = redis.hget(REDIS_TASKS_KEY, key_time) || []

tasks = JSON.parse(tasks) unless tasks.empty?
tasks << payload

redis.hset(REDIS_TASKS_KEY, key_time, tasks.to_json)

redis.unwatch
tasks

end

Not only does it use hset to push a new task onto the reserved Redis hash,
but it also takes care of the mess of maintaining more than one task per
second.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dpchat/code/lita-task-scheduler/lib/lita/scheduler.rb
http://pragprog.com/titles/dpchat
http://forums.pragprog.com/forums/dpchat

