


Backbone.Marionette.js: A Gentle
Introduction
Build a Marionette.js app, one step at a time

David Sulc

©2013 - 2014 David Sulc



Also By David Sulc
Structuring Backbone Code with RequireJS and Marionette Modules

Backbone.Marionette.js: A Serious Progression

http://leanpub.com/u/davidsulc
http://leanpub.com/structuring-backbone-with-requirejs-and-marionette
http://leanpub.com/marionette-serious-progression


Contents

Displaying a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Using Model Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Introducing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



Displaying a Model
Now that we’ve covered displaying static content, let’s move on to displaying content containing
data from a model. As you may know, one of Backbone’s selling points is the possibility to structure
javascript applications with a Model-View-Controller¹ (MVC) pattern. In this pattern, we use so-
calledmodels to interact with our data, passing them onto views for rendering the information they
contain. You can learn more about models in Backbone’s documentation².

So let’s declare a model within our javascript block, above our view declaration:

ContactManager.Contact = Backbone.Model.extend({});

That wasn’t very hard. What did we do? We simply declared a model named Contact and attached
it to our ContactManager app. As you can see, this model extends Backbone’s model definition and
inherits various methods from it. When we extend Backbone’s base model like this, we provide a
javascript object (which is empty in our case) that can contain additional information pertaining to
our model (we’ll get back to that later).

Same as before, we’ll need a template and a view definition before we can display anything in the
browser. Let’s replace our previous template and StaticView with the following:

1 <script type="text/template" id="contact-template">

2 <p><%- firstName %> <%- lastName %></p>

3 </script>

4

5 ContactManager.ContactView = Marionette.ItemView.extend({

6 template: "#contact-template"

7 });

The template will be included within the HTML body, but outside of the script block
containing our application code. Refer to the full index.html included below if you’re
unsure where this code gets inserted.

You’ll notice that we’ve got some special <%- %> tags in there. These serve the same purpose as
in many templating languages (ERB in Rails, PHP, JSP, etc.): they allow the templating engine
to interpret them and include the resulting output within the rendered result (while escaping the

¹http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
²http://backbonejs.org/#Model

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://backbonejs.org/#Model
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://backbonejs.org/#Model


Displaying a Model 2

contained HTML). By default, Marionette uses Underscore’s templating engine³ where <%- %>

means output will be displayed (and escaped), and <% %> tags which allow arbitrary javascript to be
executed (such as an if condition), and <%= %> which displays the data after interpreting (without
escaping any HTML). Since the model is serialized and passed on to the view template, writing <%-

firstName %>means the model’s firstName attribute will be displayed. For security reasons,when
in doubt, use the <%- %> alternative.

So how do we display our view with model information? With our definitions written, we still need
to create instances of a model and view, then display the view. All of this will happen within the
initialize:after handler:

1 ContactManager.on("initialize:after", function(){

2 var alice = new ContactManager.Contact({

3 firstName: "Alice",

4 lastName: "Arten",

5 phoneNumber: "555-0184"

6 });

7

8 var aliceView = new ContactManager.ContactView({

9 model: alice

10 });

11

12 ContactManager.mainRegion.show(aliceView);

13 });

First, we create a model instance with data on lines 2-6: you’ll notice we specify various model
attributes and their respective values within a javascript object. Then, we create a new view instance
and provide the model instance as an attribute on lines 8-10.

Remember how we discussed passing options to the view when it gets instantiated? That’s
exactly what we’re doing here: when we use the contact view, we’ll always be using the
same template (and have indicated it in the view definition for convenience), but the model
we’ll want to display will change. Therefore, we leave the model attribute out of the view’s
definition, andwe specifywhichmodel to use each timewe instantiate a new view instance.

And all that’s left to do after that is to display the view within the region (line 12), same as before.

Here’s what our index.html looks like at this stage:

³http://underscorejs.org/#template

http://underscorejs.org/#template
http://underscorejs.org/#template


Displaying a Model 3

1 <div id="main-region" class="container">

2 <p>Here is static content in the web page. You'll notice that it gets

3 replaced by our app as soon as we start it.</p>

4 </div>

5

6 <script type="text/template" id="contact-template">

7 <p><%- firstName %> <%- lastName %></p>

8 </script>

9

10 <!-- The javascript includes are here -->

11

12 <script type="text/javascript">

13 var ContactManager = new Marionette.Application();

14

15 ContactManager.addRegions({

16 mainRegion: "#main-region"

17 });

18

19 ContactManager.Contact = Backbone.Model.extend({});

20

21 ContactManager.ContactView = Marionette.ItemView.extend({

22 template: "#contact-template"

23 });

24

25 ContactManager.on("initialize:after", function(){

26 var alice = new ContactManager.Contact({

27 firstName: "Alice",

28 lastName: "Arten",

29 phoneNumber: "555-0184"

30 });

31

32 var aliceView = new ContactManager.ContactView({

33 model: alice

34 });

35

36 ContactManager.mainRegion.show(aliceView);

37 });

38

39 ContactManager.start();

40 </script>

And the visual result:



Displaying a Model 4

Displaying a model

Git commit to display our basic model view:

6e9ccd15319513ad20c3a97141c005a10499b28e⁴

Using Model Defaults

What if our contact didn’t have a first name? We don’t want our app to break if the firstName

attribute is missing: the template would be trying to retrieve an attribute that doesn’t exist on the
model. How canwemanage this case? The functionality we’re looking for is default values for model
attributes.

To declare default attribute values, simply add a defaults object to the main object provided to our
model definition:

1 ContactManager.Contact = Backbone.Model.extend({

2 defaults: {

3 firstName: ""

4 }

5 });

If we now declare the following model instance

1 var contact = new ContactManager.Contact({

2 lastName: "Arten",

3 phoneNumber: "555-0184"

4 });

and we try to display the missing firstName attribute, the empty string we defined as the default
value will be shown instead.

⁴https://github.com/davidsulc/marionette-gentle-introduction/commit/6e9ccd15319513ad20c3a97141c005a10499b28e

https://github.com/davidsulc/marionette-gentle-introduction/commit/6e9ccd15319513ad20c3a97141c005a10499b28e
https://github.com/davidsulc/marionette-gentle-introduction/commit/6e9ccd15319513ad20c3a97141c005a10499b28e


Displaying a Model 5

Note that this code is included only to demonstrate default model attributes. It will not be
part of our application’s code: later on, we will add model validations to manage missing
attribute values.

Introducing Events

Let’s enrich our view slightly: we’ve got a phone number for Alice, so let’s display it in an alert
when her name is clicked.

Marionette views inherit all of Backbone’s functionality, among which the ability to define events
and their associated handlers. Here’s what they look like:

1 events: {

2 "click p": "alertPhoneNumber"

3 }

This event translates as “when the user clicks the p tag that can be found in this view, call the
alertPhoneNumber function”. If you’ve used jQuery, you’ll recognize it’s essentialy an event name
followed by a selector (which could contain class names, etc.). Let’s use this feature in our view to
display Alice’s phone number, by modifying our view declaration:

1 ContactManager.ContactView = Marionette.ItemView.extend({

2 template: "#contact-template",

3

4 events: {

5 "click p": "alertPhoneNumber"

6 },

7

8 alertPhoneNumber: function(){

9 alert(this.model.escape("phoneNumber"));

10 }

11 });

Backbone models’ escape⁵ works the same way as get⁶: they both return the value of the
attribute provided as an argument, but escape will escape HTML content, protecting you
from XSS attacks if you’re displaying user-provided data within the HTML.

⁵http://backbonejs.org/#Model-escape
⁶http://backbonejs.org/#Model-get

http://backbonejs.org/#Model-escape
http://backbonejs.org/#Model-get
http://backbonejs.org/#Model-escape
http://backbonejs.org/#Model-get


Displaying a Model 6

If you now refresh the page and click on Alice’s name, you’ll see her phone number displayed. Pretty
straightforward, right? You’ll notice that since we’re in the view definition when we’re writing our
alertPhoneNumber function, we have access to the view’s model instance via this.model, even
though which model instance will be used isn’t known yet (it’s provided when we instantiate the
view, remember?).

Displaying an alert when clicking a contact

This code is not going to be included in our app, so you won’t see it going forward.

Exercise

Displaying a Contact With No Phone Number
Add a default phone number of “No phone number!”. Then create a new model without
a phone number, and click on it. Make sure that “No phone number!” is displayed in the
alert. You can see the exercise solution at the end of the book.


	Table of Contents
	Displaying a Model
	Using Model Defaults
	Introducing Events
	Exercise


