

Backbone.Marionette.js: A Gentle
Introduction
Build a Marionette.js app, one step at a time

David Sulc

©2013 - 2014 David Sulc

Also By David Sulc
Structuring Backbone Code with RequireJS and Marionette Modules

Backbone.Marionette.js: A Serious Progression

http://leanpub.com/u/davidsulc
http://leanpub.com/structuring-backbone-with-requirejs-and-marionette
http://leanpub.com/marionette-serious-progression

Contents

Implementing Routing . 1
How to Think About Routing . 1
Adding a Router to ContactsApp . 2
Routing Helpers . 6
End of Preview Chapter . 8

Implementing Routing
Our ContactManager app now lets users navigate from the contacts index to a page displaying a
contact. But once the user gets to the contact’s page, he’s stuck: the browser’s “back” button doesn’t
work. In addition, users can’t bookmark a contact’s display page: the URL saved by the browser
would be the index page. Later, when the user loads the bookmark again, the user will end up seeing
the contact list view instead of the contact’s display page he expected. To address these issues, we’ll
implement routing in our application.

How to Think About Routing

It’s important that we define the router’s role, in order to design our app properly. All a router does
is

• execute controller actions corresponding to the URL with which the user first “entered” our
Marionette app. It’s important to note that the route-handling code should get fired only when
a user enters the application by a URL, not each time the URL changes. Put another way, once
a user is within our Marionette app, the route-handling shouldn’t be executed again, even
when the user navigates around;

• update the URL in the address bar as the user navigates within the app (i.e. keep the displayed
URL in sync with the application state). That way, a user could potentially use the same URL
(by bookmarking it, emailing it to a friend, etc.) to “restore” the app’s current confguration
(i.e. which views are displayed, etc.). Keeping the URL up to date also enables the browser’s
“back” and “forward” buttons to function properly.

It’s very important to differentiate triggering routing events from updating the URL. In
traditional web frameworks, actions are triggered by hitting their corresponding URLs.
This isn’t true for javascript web applications: our ContactManager has been working just
fine (even “changing pages”) without ever caring about the current URL.

And now that we have a basic app functioning as we want it to, we’ll add in a router to manage the
URL-related functionality. Our router will only get triggered by the first URL it recognizes, resulting
in our app getting “initialized” to the correct state (i.e. showing the proper data in the proper views).
After that initialization step has fired once, the router only keeps the URL up to date as the user
navigates our app: changing the displayed content will be handled by our controllers, as it has been
up to now.

Implementing Routing 2

Adding a Router to ContactsApp

Now that we have a better idea of how routing should be used, let’s add a router to our ContactsApp
by creating a new file:

Adding a router to our ContactsApp (assets/js/apps/contacts/contacts_app.js)

1 ContactManager.module("ContactsApp", function(ContactsApp, ContactManager,

2 Backbone, Marionette, $, _){

3 ContactsApp.Router = Marionette.AppRouter.extend({

4 appRoutes: {

5 "contacts": "listContacts"

6 }

7 });

8

9 var API = {

10 listContacts: function(){

11 console.log("route to list contacts was triggered");

12 }

13 };

14

15 ContactManager.addInitializer(function(){

16 new ContactsApp.Router({

17 controller: API

18 });

19 });

20 });

As you can tell from the module callback on line 1, we’re defining the router within the ContactsApp
module because it will handle the routes for all the sub-modules attached to ContactsApp (such as
List, Show, etc.). On line 3, we attach a Router instance containing an appRoutes¹ object associating
the URL fragments on the left with callback methods on the right.

Next, we define public methods within an API object on lines 9-13, which is provided to the router
during instantiation on line 17. Note that the callback function (e.g. listContacts) specified in the
appRoutes object above must exist in the router’s controller. In other words, all the callbacks used
in the appRoutes object must be located in our API object.

¹https://github.com/marionettejs/backbone.marionette/blob/master/docs/marionette.approuter.md#configure-routes

https://github.com/marionettejs/backbone.marionette/blob/master/docs/marionette.approuter.md#configure-routes
https://github.com/marionettejs/backbone.marionette/blob/master/docs/marionette.approuter.md#configure-routes

Implementing Routing 3

Let’s briefly talk about initializers: as you can see on line 15 above, we’re adding an
initializer by calling the aptly named addInitializer method. So why are we listening
for the “initialize:after” event in other circumstances, instead of using addInitializer?
Execution order. We can add initializers with calls to addInitializer, and the provided
functions will be executed when the application is running. Then, once all initializers have
been run, the “initialize:after” event is triggered. We’ll discuss further the implications of
this difference below.

Don’t forget to add the sub-application file to our includes in index.html:

index.html

1 <script src="./assets/js/app.js"></script>

2 <script src="./assets/js/entities/contact.js"></script>

3

4 <script src="./assets/js/apps/contacts/contacts_app.js"></script>

5 <script src="./assets/js/apps/contacts/list/list_view.js"></script>

6 <script src="./assets/js/apps/contacts/list/list_controller.js"></script>

7 <script src="./assets/js/apps/contacts/show/show_view.js"></script>

8 <script src="./assets/js/apps/contacts/show/show_controller.js"></script>

When we enter “index.html#contacts” in our browser’s address bar and hit enter, we expect to see
“route to list contacts was triggered” in the console but nothing happens. That is because the URL
management is delegated to Backbone’s history², which we haven’t started. So let’s add the code
for starting Backbone’s history in our app’s initializer:

Starting Backbone’s history in assets/js/app.js

1 ContactManager.on("initialize:after", function(){

2 if(Backbone.history){

3 Backbone.history.start();

4 }

5 });

²http://backbonejs.org/#History

http://backbonejs.org/#History
http://backbonejs.org/#History

Implementing Routing 4

The difference between listening for the “initialize:after” event and calling the
addInitializer method (as discussed above) has important implications for our applica-
tion: we can only start Backbone’s routing (via the history attribute) once all initializers
have been run, to ensure the routing controllers are ready to respond to routing events.
Otherwise (if we simply used addInitializer), Backbone’s routing would be started,
triggering routing events according to the URL fragments, but these routing events
wouldn’t be acted on by the application because the routing controllers haven’t been
defined yet!

Another important difference between “initialize:after” and addInitializer is if and when
the provided function argument is executed:

• the “initialize:after” event listener can only respond to events triggered after it has
been defined. This means that if you define your listener after the “initialize:after”
event has been triggered, nothing will happen;

• the addInitializer method will execute the provided function when the app is
running. This means that if the app isn’t yet running, it will wait until the app has
started before running the code; but if the app is already running by the time you
call addInitializer, the function will be executed immediately.

If we now hit the “index.html#contacts” URL as an entry point, we’ll see the expected output in our
console. We’ve got history working!

But you’ll also see that our app no longer lists our contacts: we’ve removed the line that called our
listContacts action in the app initializer code, namely:

ContactManager.ContactsApp.List.Controller.listContacts();

We need to trigger this controller action from our ContactsApp routing controller:

Adding a router to our ContactsApp (assets/js/apps/contacts/contacts_app.js)

1 ContactManager.module("ContactsApp", function(ContactsApp, ContactManager,

2 Backbone, Marionette, $, _){

3 ContactsApp.Router = Marionette.AppRouter.extend({

4 appRoutes: {

5 "contacts": "listContacts"

6 }

7 });

8

9 var API = {

10 listContacts: function(){

Implementing Routing 5

11 ContactsApp.List.Controller.listContacts();

12 }

13 };

14

15 ContactManager.addInitializer(function(){

16 new ContactsApp.Router({

17 controller: API

18 });

19 });

20 });

We simply needed to change line 11 to execute the proper controller action, and we’re in business:
entering “index.html#contacts” in the browser’s address bar displays our contacts, as expected. But
if we go to “index.html”, nothing happens. Why is that?

It’s pretty simple, really: we’ve started managing our app’s initial state with routes, but have no
route registered for the root URL.

Implementing Routing 6

What about pushState?
Backbone allows you to leverage HTML5’s pushState³ functionality by changing your
history starting code to Backbone.history.start({pushState: true}); (see documen-
tation⁴).

When using pushState, URL fragments look like the usual “/contacts/3” instead of “#con-
tacts/3”. This allows you to serve an enhanced, javascript-heavy version of the page to
users with javascript-enabled browsers, while serving the basic HTML experience to clients
without javascript (e.g. search engine crawlers). Be aware, however, that to use pushState
in your application your server has to respond to that URL. This is a frequent error
when trying out pushState.

You’re free to have your server systematically respond with your index.html page
regardless of the requested URL, but something needs to be sent to the client when the
URL is requested (e.g. when loading a bookmark). When sending index.html to all client
requests, you’re bascially delegating the URL resolution to your Marionette app: when the
browser will load index.html, the app will start along with the route-handling code, which
will load the correct application state (since the route corresponding to the URL requested
by the client will get triggered).

Another strategy is to progressively enhance your application, as Derick Bailey introduced
in a blog post⁵.

A great resource to read up on HTML5’s History API is Dive Into HTML5⁶, and the links
provided in its “Further Reading” paragraph at the end.

Routing Helpers

Here’s what we want to do: if the user comes to our app at the root URL, let’s redirect him to
“#contacts”. The basic way of accomplishing this would be:

³http://www.whatwg.org/specs/web-apps/current-work/multipage/history.html#history
⁴http://backbonejs.org/#History-start
⁵http://lostechies.com/derickbailey/2011/09/26/seo-and-accessibility-with-html5-pushstate-part-1-introducing-pushstate/
⁶http://diveintohtml5.info/history.html

http://www.whatwg.org/specs/web-apps/current-work/multipage/history.html#history
http://backbonejs.org/#History-start
http://backbonejs.org/#History-start
http://lostechies.com/derickbailey/2011/09/26/seo-and-accessibility-with-html5-pushstate-part-1-introducing-pushstate/
http://diveintohtml5.info/history.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/history.html#history
http://backbonejs.org/#History-start
http://lostechies.com/derickbailey/2011/09/26/seo-and-accessibility-with-html5-pushstate-part-1-introducing-pushstate/
http://diveintohtml5.info/history.html

Implementing Routing 7

Redirecting to the root URL (assets/js/app.js)

1 ContactManager.on("initialize:after", function(){

2 if(Backbone.history){

3 Backbone.history.start();

4

5 if(Backbone.history.fragment === ""){

6 Backbone.history.navigate("contacts");

7 ContactManager.ContactsApp.List.Controller.listContacts();

8 }

9 }

10 });

On line 5, we check the URL fragment (i.e. the string that comes after “index.html” in the URL,
ignoring the # character): if it’s empty, we need to redirect the user. Except that in javascript web
apps, “redirecting” is a bit of a misnomer: we’re not redirecting anything (as we would be with a
server), we are just

• updating the URL with the proper fragment (line 6)
• executing the proper controller action (line 7), which will display the desired views

You can achieve the same result by putting Backbone.history.navigate("contacts",

{trigger: true}); on line 6, and removing line 7. You will sometimes see this done
in various places on the web, but it encourages bad app design and it is strongly
recommended you don’t pass trigger:true to Backbone.history.navigate. Derick
Bailey (Marionette’s creator) even wrote a blog post⁷ on the subject.

Triggering routes to execute desired behavior is a natural reflex when you’re coming
from typical stateless web development, because that’s how it works: the user hits a URL
endpoint, and the corresponding actions are performed. And although triggering the route
looks better at first glance (less code), it will expose you to design problems: if you’re
unable to get your app to behave as expected using controller methods, you’ve got issues
that should be addressed. Keeping the {trigger: false} default when navigating will
encourage the proper separation of app behavior and URLmanagement, as discussed above.

Note that navigate doesn’t just change the URL fragment, it also adds the new URL to the browser’s
history. This, in turn, makes the browser’s “back” and “forward” buttons behave as expected.

Let’s get back to our code and refactor: checking the current URL fragment and keeping it up to date
are things we’ll be doing quite frequently as we develop our app. Let’s extract them into functions
attached to our app:

⁷http://lostechies.com/derickbailey/2011/08/28/dont-execute-a-backbone-js-route-handler-from-your-code/

http://lostechies.com/derickbailey/2011/08/28/dont-execute-a-backbone-js-route-handler-from-your-code/
http://lostechies.com/derickbailey/2011/08/28/dont-execute-a-backbone-js-route-handler-from-your-code/

Implementing Routing 8

Redirecting to the root URL (assets/js/app.js)

1 var ContactManager = new Marionette.Application();

2

3 ContactManager.addRegions({

4 mainRegion: "#main-region"

5 });

6

7 ContactManager.navigate = function(route, options){

8 options || (options = {});

9 Backbone.history.navigate(route, options);

10 };

11

12 ContactManager.getCurrentRoute = function(){

13 return Backbone.history.fragment

14 };

15

16 ContactManager.on("initialize:after", function(){

17 if(Backbone.history){

18 Backbone.history.start();

19

20 if(this.getCurrentRoute() === ""){

21 this.navigate("contacts");

22 ContactManager.ContactsApp.List.Controller.listContacts();

23 }

24 }

25 });

We’ve simply declared helper functions on lines 7 and 12, and we then use them on lines 20-21. Note
that line 8 essentially sets options to {} if none are provided (i.e. it sets a default value).

If you think about it, these helper functions aren’t really specific to our application: they’re
closer to extensions of theMarionette framework. For simplicity’s sake, we’ve kept the code
above in the main app, but refer to the Extending Marionette chapter to see how this can
be accomplished to clean up our code further.

End of Preview Chapter

The chapter in the book contains additionalcontent, not included here due to spaceconstraints.

	Table of Contents
	Implementing Routing
	How to Think About Routing
	Adding a Router to ContactsApp
	Routing Helpers
	End of Preview Chapter

