Extracted from:

Rapid Android Development

Build Rich, Sensor-Based Applications with Processing

This PDF file contains pages extracted from Rapid Android Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Edited by John Osborn

Rapid Android
evelopment

Build Rich, Sensor-Based
Applications with Processing

‘\“@m

Daniel Sauter

Foreword by Jer Thorp, Co-founder,
The Office for Creative Research

Rapid Android Development

Build Rich, Sensor-Based Applications with Processing

Daniel Sauter

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The Android robot is reproduced from work created and shared by Google and is used
according to terms described in the Creative Commons 3.0 Attribution License (http://cre-
ativecommons.org/licenses/by/3.0/us/legalcode).

The team that produced this book includes:

John Osborn (editor)

Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93778-506-2

Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—May 2015

https://pragprog.com
http://creativecommons.org/licenses/by/3.0/us/legalcode
http://creativecommons.org/licenses/by/3.0/us/legalcode
rights@pragprog.com

Detect Multitouch Gestures

For this project, we’ll implement the most common user interactions using
just one simple geometric primitive—a rectangle—drawn on the screen using
Processing’s rect(x, y, width, height) method.?® To begin, we'll place a rectangle in
a specified size of 100 pixels in the center of the screen. Then we use a series
of KetaiGesture callback events to trigger changes to the rectangle, including a
change of scale, rotation, color, and position, as illustrated in Figure 5, Using
multitouch gestures, on page 6.

We have a number of callback events for the touch surface to try out, so we’ll
assign each of them with a particular purpose. We'll zoom to fit the rectangle
onto the screen using onDoubleTap(), randomly change its fill color onLongPress()
using Processing’s random() method,*® scale it onPinch(), rotate it onRotate(), drag
it using mouseDragged(), and change the background color onFlick(). Besides
manipulating color properties and the rectangle, we’ll keep track of the mul-
titouch events as they occur by printing a text string to the Processing Console.
The code we use to manipulate the properties and the callback methods
themselves are not complicated in any way, but we're now dealing with a bit
more code than we have before because were using a series of callback
methods in one sketch.

Introducing 2D Transformations

For this project, we’ll lock our app into LANDSCAPE orientation() so we can maintain
a clear reference point as we discuss 2D transformations in reference to the
coordinate system. To center our rectangle on the screen when we start up,
to scale from its center point using the pinch gesture, and to rotate it around
its center point using the rotate gesture, we need to work with two-dimensional
(2D) transformations.?”

We'll use the Processing’s rectMode(CENTER) method to overwrite the default way
a rectangle is drawn in Processing,”® which is from the upper left corner of
the rectangle located at position [x, y] with a specified width and height. Instead
we draw it from its center point using rectMode(CENTER), which allows us to
rotate and scale it around its center point.

25. http://processing.org/reference/rect .html

« Click HERE to purchase this book now. discuss

http://processing.org/reference/rect_.html
http://processing.org/reference/random_.html
http://processing.org/learning/transform2d/
http://processing.org/reference/rectMode_.html
http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

°6

Figure 5—Using multitouch gestures. A rectangle scaled with a two-finger pinch gesture,

turned by a two-finger rotation gesture, placed on a brown background color, and triggered

by a flick, as well as a gray fill color caused by a long press. The text “DOUBLE” appears due
to a double-tap gesture at the position indicated by the hand silhouette.

It is common to explain 2D transformations in terms of a grid, where each
grid cell stands for one pixel of our app’s display window. The default origin
in Processing’s coordinate system is always the upper left corner of the win-
dow. Each graphic element is drawn relative to this origin. We’ll use Process-
ing’s transformation methods, translate() and rotate(), to move and rotate our
rectangle.29 We also have a scale() method,*® which we won't use in this sketch.

When we draw graphic objects in Processing on our grid paper, we are used
to specifying the rectangle’s horizontal and vertical coordinates using x and
y values. We can use an alternative method, which is necessary here, where
we move our grid (paper) to specified horizontal and vertical coordinates,
rotate, and then draw the rotated rectangle at position x and y [0, 0]. This way
the rectangle doesn’t move to our intended position, but our grid paper
(coordinate system) did. The advantage is that we can now rotate() our rect()
right on the spot around its center point, something we can’t do otherwise.

What's more, we can introduce a whole stack of grid paper if we’d like to by
using the Processing methods pushMatrix() and popMatrix(). When we move, rotate,
and scale multiple elements and would like to transform them separately, we
need to draw them on separate pieces of grid paper. The pushMatrix() method
saves the current position of our coordinate system, and popMatrix() restores
the coordinate system to the way it was before pushing it.

« Click HERE to purchase this book now. discuss

http://processing.org/reference/translate_.html
http://processing.org/reference/rotate_.html
http://processing.org/reference/scale_.html
http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

Q0

©0

006

Detect Multitouch Gestures ® 7

Like our first project in this chapter, in which we used Processing’s mouse-
Pressed(), mouseReleased(), and mouseDragged() callback methods to identify touches
to the screen, some of the multitouch gestures introduced here fulfill the
same purpose. If we’d like to use Processing’s mouse methods alongside
multitouch methods provided by KetaiGesture, we’ll need to notify the superclass
method surfaceTouchEvent() to notify the Processing app that a surface touch
event has occurred.”’

Now let’s take a look at our multitouch code.

Display/Gestures/Gestures.pde
import ketai.ui.*;
import android.view.MotionEvent;

KetaiGesture gesture;

float rectSize = 100;

float rectAngle = 0;

int x, y;

color ¢ = color(255);

color bg = color(78, 93, 75);

void setup()
{
orientation(LANDSCAPE);
gesture = new KetaiGesture(this);

textSize(32);
textAlign(CENTER, BOTTOM);
rectMode (CENTER) ;
noStroke();

width/2;
height/2;

< X
nn

}

void draw()
{
background(bg);
pushMatrix();
translate(x, y);
rotate(rectAngle);
fill(c);
rect(0, 0, rectSize, rectSize);
popMatrix();
}

public boolean surfaceTouchEvent(MotionEvent event) {

31. http://processing.org/reference/super.html

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dsproc/code/Display/Gestures/Gestures.pde
http://processing.org/reference/super.html
http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

°8

//call to keep mouseX and mouseY constants updated
super.surfaceTouchEvent(event);

//forward events

return gesture.surfaceTouchEvent(event);

}

@ void onTap(float x, float y)
{
text ("SINGLE", x, y-10);
println("SINGLE:" + x + "," +vy);
}

@ void onDoubleTap(float x, float y)
{
text ("DOUBLE", x, y-10);
println("DOUBLE:" + x + "," +y);

if (rectSize > 100)
rectSize = 100;
else
rectSize = height - 100;
}

@ void onLongPress(float x, float y)

{
text ("LONG", x, y-10);
println("LONG:" + x + "," + y);

¢ = color(random(255), random(255), random(255));

}
@ void onFlick(float x, float y, float px, float py, float v)
{
text("FLICK", x, y-10);
println("FLICK:" + x + "," +y + "," + v);

bg = color(random(255), random(255), random(255));

}
@ void onPinch(float x, float y, float d)
{
rectSize = constrain(rectSize+d, 10, height);
printin("PINCH:" + x + "," +y + "," + d);
}

@ void onRotate(float x, float y, float angle)
{

rectAngle += angle;
println("ROTATE:" + angle);
}

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

Detect Multitouch Gestures ® 9

@ void mouseDragged()

{
if (abs(mouseX - x) < rectSize/2 && abs(mouseY - y) < rectSize/2)
{
if (abs(mouseX - pmouseX) < rectSize/2)
X += mouseX - pmouseX;
if (abs(mouseY - pmouseY) < rectSize/2)
y += mouseY - pmouseY;
}
}

Let’s take a look at the steps we need to take to capture and use multitouch
gestures on the Android touch screen.

©® Import Ketai’s ui package to give us access to the KetaiGesture class.
©® Import Android’s MotionEvent package.

© Define a variable called gesture of type KetaiGesture.

O Set a variable we call rectSize to 100 pixels to start off.

© Define the initial color c¢ (white), which we’ll use as a fill color for the
rectangle and text.

0O Define the initial color bg (dark green), which we’ll use as a background
color.

© Instantiate our KetaiGesture object gesture.

O Set the initial value for our variable x as the horizontal position of the
rectangle.

© Set the initial value for y as the vertical position of the rectangle.

@ Push the current matrix on the matrix stack so that we can draw and
rotate the rectangle independent of other Ul elements, such as the text.

@ Move to the position [x, y] using translate().
@ Pop the current matrix to restore the previous matrix on the stack.

® Use the Processing method surfaceTouchEvent() to notify Processing about
mouse/finger-related updates.

@ Use the callback method onTap() to display the text string SINGLE at the
location (x, y) returned by KetaiGesture.

® Use the callback method onDoubleTap() to display the text string DOUBLE at
the location returned by KetaiGesture, indicating that the user triggered a
double-tap event. Use this event to decrease the rectangle size to the

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

°10

original 100 pixels if it’'s currently enlarged, and increase the rectangle
scale to the display height minus 100 pixels if it’s currently minimized to
its original scale.

@ Use the callback method onLongPress() to display the text string “LONG” at
the location (x, y) returned by KetaiGesture. Use this event to randomly select
a new color ¢ using random(), which we’ll use as a fill color for the rectangle.

® Use the callback method onFlick() to display the text string FLICK at the
location x and y returned by KetaiGesture. Also, receive the previous location
where the flick has been initiated as px and py, as well as the velocity v.

@ Use the callback method onPinch() to calculate the scaled rectSize using the
pinch distance d at the location x and y returned by KetaiGesture.

@ Use the callback method onRotate() to calculate the rotation angle rectAngle
using the angle returned by KetaiGesture.

@ Use Processing’s mouseDragged() callback to update the rectangle position
(x and y) by the amount of pixels moved. Determine this amount by sub-
tracting the previous pmouseX from the current mouseX, and pmouseY from
mouseY. Move the rectangle only if absolute distance between the rectangle
and the mouse position is less than half the rectangle’s size, or when we
touch the rectangle.

Let’s test the app.

Run the App

Run the app on your device. You'll see a square show up in the center of the
screen. Drag it to a new location, flick to change the background color, and
give it a long tap to change the foreground fill color.

To test the multitouch gestures, put two fingers down on the screen and
pinch, and you’ll see how the rectangle starts scaling. Now rotate the same
two fingers to see the rectangle rotate. If you use more than two fingers, the
first two fingers you put down on the screen are in charge.

Finally, double-tap the screen to zoom the square to full screen, and double-
tap again to scale it to its initial size of 100 pixels.

This completes our investigation into the multitouch features of the touch
screen panel.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

