
Extracted from:

Rapid Android Development
Build Rich, Sensor-Based Applications with Processing

This PDF file contains pages extracted from Rapid Android Development, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Rapid Android Development
Build Rich, Sensor-Based Applications with Processing

Daniel Sauter

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The Android robot is reproduced from work created and shared by Google and is used
according to terms described in the Creative Commons 3.0 Attribution License (http://cre-
ativecommons.org/licenses/by/3.0/us/legalcode).

The team that produced this book includes:

John Osborn (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93778-506-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P3.0—May 2015

https://pragprog.com
http://creativecommons.org/licenses/by/3.0/us/legalcode
http://creativecommons.org/licenses/by/3.0/us/legalcode
rights@pragprog.com

Detect and Trace the Motion of Colored Objects
In the drawing game that we’ll build in this section, two players will compete
to see who can fill the screen of an Android device with the color of a red or
blue object first. Without touching the device screen, each player scribbles
in the air above it with a blue or red object in an attempt to fill as much space
as possible with the object’s color. When more than 50 percent of the screen
is filled, the player that filled in the most pixels wins. We’ll use the front-facing
camera as the interactive interface for this game. It’s job is to detect the
presence of the colors blue or red within its field of vision and capture them
each time it records a frame. The game code will increase the score of each
player who succeeds in leaving a mark on the screen. It will look like this.

The camera remains static during the game, and only the primary colors red
and blue leave traces and count toward the score. If the red player succeeds
in covering more pixel real estate than the blue, red wins. If blue dominates
the screen, blue wins. If you are using an Android tablet you can step a little
bit further away from the device than is the case for a phone, where the
players are more likely to get in each other’s way, making the game more
competitive and intimate.

The magic marker drawing game uses color tracking as its main feature. As
we implement this game, we put Processing’s image class, called PImage, to
use. The main purpose of this datatype is to store images, but it also contains
a number of very useful methods that help us manipulate digital images. In
the context of this game, we’ll use PImage methods again to retrieve pixel color

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

values and to set pixel values based on some conditions we implement in our
sketch.

Manipulating Pixel Color Values
To create this magic marker drawing game, we need to extract individual
pixel colors and decide whether a pixel matches the particular colors (blue
and red) we are looking for. A color value is only considered blue if it is within
a range of “blueish” colors we consider blue enough to pass the test, and the
same is true for red. Once we detect a dominant color between the two, we
need to call a winner.

For an RGB color to be considered blue, the blue() value of the pixel color needs
to be relatively high,24 while at the same time the red() and green() values must
be relatively low.25 Only then does the color appear blue. We are using the
Processing color methods red(), green(), and blue() to extract R, G, and B values
from each camera pixel. Then we determine whether we have a blue pixel, for
instance, using a condition that checks if blue() is high (let’s say 200) and at
the same time red() and green() are low (let’s say 30) on a scale of 0..255. To make
these relative thresholds adjustable, let’s introduce variables called high and
low for this purpose.

Let’s take a look. The sketch again contains CameraControls, which we don’t
discuss here because we already know the method to start() and stop() the
camera.

Camera/CameraMagicMarker/CameraMagicMarker.pde
import ketai.camera.*;

KetaiCamera cam;
PImage container;
int low = 30;
int high = 100;
int camWidth = 1280;
int camHeight = 768;
int redScore, blueScore = 0;
int win = 0;

void setup() {
orientation(LANDSCAPE);
imageMode(CENTER);
cam = new KetaiCamera(this, camWidth, camHeight, 30);
// 0: back camera; 1: front camera
cam.setCameraID(1);

24. http://processing.org/reference/blue_.html
25. http://processing.org/reference/red_.html and http://processing.org/reference/green_.html.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dsproc/code/Camera/CameraMagicMarker/CameraMagicMarker.pde
http://processing.org/reference/blue_.html
http://processing.org/reference/red_.html
http://processing.org/reference/green_.html
http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

container = createImage(camWidth, camHeight, RGB);❶
}

void draw() {
if (win == 0) background(0);
if (cam.isStarted()) {

cam.loadPixels();
float propWidth = height/camHeight*camWidth;❷
if (win == 0) image(cam, width/2, height/2, propWidth, height);❸
for (int y = 0; y < cam.height; y++) {
for (int x = 0; x < cam.width; x++) {

color pixelColor = cam.get(x, y);❹
if (red(pixelColor) > high &&

green(pixelColor) < low && blue(pixelColor) < low) {❺
if (brightness(container.get(x, y)) == 0) {❻
container.set(x, y, pixelColor);
redScore++;

}
}
if (blue(pixelColor) > high &&

red(pixelColor) < low && green(pixelColor) < low) {❼
if (brightness(container.get(x, y)) == 0) {
container.set(x, y, pixelColor);
blueScore++;

}
}

}
}
image(container, width/2, height/2, propWidth, height);❽
fill(255, 0, 0);
rect(0, height, 20, map(redScore, 0, camWidth*camHeight, 0, -height));
fill(0, 0, 255);
rect(width-20, height, 20, map(blueScore, 0, camWidth*camHeight, 0, -height));
if (redScore+blueScore >= camWidth*camHeight * 0.50) {❾
win++;
if (redScore > blueScore) {❿

fill(255, 0, 0, win);
}
else {

fill(0, 0, 255, win);
}
rect(0, 0, width, height);

}
if (win >= 50) {
container.loadPixels();⓫
for (int i = 0; i < container.pixels.length; i++) {

container.pixels[i] = color(0, 0, 0, 0);⓬
redScore = blueScore = win = 0;

}
}

• Click HERE to purchase this book now. discuss

Detect and Trace the Motion of Colored Objects • 7

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

}
}

void mousePressed()
{

if(cam.isStarted())
cam.stop();

else
cam.start();

}

There are a couple of new methods for us to look at.

❶ Create an empty PImage called container using the createImage() method to
hold red and blue color pixels that have been detected in the camera
preview image. The empty RGB image container matches the size of the
camera preview image.

❷ Calculate the fullscreen camera preview image width propWidth proportional
to the camera preview aspect ratio. We get the ratio by dividing the screen
height by the camera preview height camHeight and multiplying that with
the camWidth.

❸ Draw the camera preview image in fullscreen size using image() if no player
has won the game yet (win equals 0). Match the image height with the
screen height and scale the image width proportionately.

❹ Get the color value at the image pixel location x and y using the PImage
method get(). Store the value in the color variable pixelColor.

❺ Check for reddish pixel values within the camera preview using the red(),
green(), and blue() PImage methods to extract individual color values from
the color datatype. Consider only pixel values with a red content greater
than the high threshold and low green and blue values. Use the globals high
and low for the upper and lower limits of this condition.

❻ Check if the pixel is already taken by a color using brightness(). If the container
is empty and not set yet, it has a brightness value of 0.

❼ Check for blueish pixel value in the camera image. It requires a color with
a high blue content, while the red and green values are low.

❽ Draw the container using the image() method. This PImage contains all the
red and blue pixels we grabbed from the camera’s preview image.

❾ Check for the winner when at least 50 percent of the image is covered,
comparing the combined redScore and blueScore values against 0.50 of all
camera preview pixels.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

❿ Fade to the winning color by changing the fill() opacity of a colored rectangle
covering the screen. To achieve a continuous fade, use the win variable
for the alpha parameter so that the following rectangle is drawn with
decreasing opacity (0: fully opaque, 255 fully transparent).

⓫ Load the pixel data from the container PImage into the pixels[] array. The
function must be called before writing to (or reading from) pixels[].

⓬ Empty all pixels[] in the container image pixel array. Set all pixels to the
color(0, 0, 0, 0), which is a fully transparent black color. The Processing rule
is that you must call loadPixels() before you read from or write to pixels[],
even if some renderers seem not to require this call.

Now let’s see how well the camera picks up the colorstest of some blueish
and reddish objects. Any kind of object will do as long as its color is a vibrant
red or blue—the more intense its hue and brightness the better.

Run the App
Grab a friend and a few blueish and reddish objects, and get ready to scribble
madly mid-air and fight for pixel real estate on the Android device. When you
run the sketch, the camera preview will appear centered on the screen,
stretched to fullscreen size. Reddish and blueish colors are instantly picked
up and drawn on top of the preview image. This immediate feedback lets us
play with different objects and quickly get an idea about which objects have
the greatest color impact as we try to cover the screen.

Try it. The status bar on either side of the screen grows as colors are picked
up, showing us how much pixel real estate each player owns. Individual scores
are compared with the total number of available pixels. If 50 percent of all
pixels are grabbed by the red player, for instance, the red progress bar covers
half of the screen height. Once more than 50 percent of all available pixels
are taken, the sketch calls a winner and fades to the winning color. It resets
the game to start over.

This game has taken us deep into the world of pixels using all the prior color
knowledge we’ve acquired in Build a Motion-Based Color Mixer and Palette,
on page ?. The PImage datatype is a convenient way to work with images,
which are in principle “just” lists of colors containing red, green, blue, and
alpha (transparency) values that we can use for our own purposes, such as
our magic marker drawing game.

If your device is up to the challenge, feel free to double the camera resolution
via camWidth and camHeight for better image quality, but consequently you’ll

• Click HERE to purchase this book now. discuss

Detect and Trace the Motion of Colored Objects • 9

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

have to lower the frame rate. We’ve discussed that pixel-level calculations are
computationally expensive and hence require a speedy Android device to run
smoothly. In Chapter 11, Introducing 3D Graphics with OpenGL, on page ?,
we will learn a few tricks that help us put the graphics processing unit (GPU)
to use, keeping the central processing unit (CPU) free for other tasks.

Since you’ve successfully interpreted images on a pixel level, let’s take it a
step further now and explore how pixel-level image algorithms are used for
advanced image processing and computer vision purposes, specifically for
Android’s face detection API.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dsproc
http://forums.pragprog.com/forums/dsproc

