
Extracted from:

Web Development with Clojure
Build Bulletproof Web Apps with Less Code

This PDF file contains pages extracted from Web Development with Clojure, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Web Development with Clojure
Build Bulletproof Web Apps with Less Code

Dmitri Sotnikov

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-64-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2014

http://pragprog.com

CHAPTER 3

Liberator Services
In the last chapter we talked about how to write a typical web application
and how its components interact with one another. For example, we now
know how to manage the routes, write HTML templates, and use sessions for
state management. In this chapter we’ll look at a different approach to writing
applications.

As you’ve probably noticed, the separation between the client and the server
portions of the application is not enforced. If we’re not careful we could easily
end up with a tightly coupled client and server components. This could become
a problem if we wish to add a different client later on—for example, if we
decided to create a native mobile version of our application.

In this chapter we’ll cover how to use the Liberator library to ensure the
separation of concerns between the server and the client.1 Liberator is a Clo-
jure library for writing RESTful services modeled after webmachine,2 a popular
service framework for Erlang. Its primary feature is that it puts a strong
emphasis on decoupling the front end from the back end of your application.

Conceptually, Liberator provides a clean way to reason about your service
operations. Each request passes through a series of conditions and handlers
defined in the resource. These map to the codes specified by the HTTP
RFC 2616, such as 200 - OK, 201 - created, 404 - not found, and so on.

This approach makes it very easy to write standards-compliant services and
to group the operations logically. It also means that your services will auto-
matically use the appropriate HTTP codes associated with a particular
response.

1. http://clojure-liberator.github.io/liberator/
2. https://github.com/basho/webmachine

• Click HERE to purchase this book now. discuss

http://clojure-liberator.github.io/liberator/
https://github.com/basho/webmachine
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

Due to its focus on the separation of the front-end and back-end logic, Liber-
ator is a natural choice for writing many types of web applications. These
include general-purpose services, single-page applications, and applications
that might have nonweb clients, such as mobile applications.

Creating the Project

In this section we’ll cover how to create a simple application that serves
static resources, provides basic session management, and handles JavaScript
Object Notation (JSON) operations.

First let’s create a new application called liberator-service using the compojure-
app template.

lein new compojure-app liberator-service

Once the application is created, add Liberator and Cheshire dependencies to
our project.clj dependencies vector:3

:dependencies
[...

[liberator "0.10.0"]
[cheshire "5.2.0"]]

Cheshire is a fast and easy-to-use JSON parsing library. We’ll use it for
parsing the requests from the client and generating the responses.

At this point, we should be able to start up the read-evaluate-print loop (REPL)
by running the start-server in the liberator-service.repl namespace.

Currently, the application displays the default home route created by the
template. Let’s look at how we can render a Liberator route instead.

Defining Resources
Liberator uses the concept of resources to interact with the client. The resources
are simply Ring-compliant handlers that can be used inside your Compojure
routes. These resources are defined using the resource and defresource macros. Let’s
open the liberator-service.routes.home namespace. We’ll remove the reference to layout
and add the references for resource and defresource to the declaration:

liberator-snippets/home.clj
(ns liberator-service.routes.home

(:require [compojure.core :refer :all]
[liberator.core
:refer [defresource resource request-method-in]]))

3. https://github.com/dakrone/cheshire

Chapter 3. Liberator Services • 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
https://github.com/dakrone/cheshire
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

Now we can replace our "/" route with a resource as follows:

liberator-snippets/home.clj
(defroutes home-routes

(ANY "/" request
(resource

:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])))

If we reload the page we’ll see Hello World! displayed. Note that we’re using
ANY Compojure route for our resource. This allows the Liberator resource to
handle the request type.

Say we want to name the resource handler; we can use defresource instead:

liberator-snippets/home.clj
(defresource home

:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

(defroutes home-routes
(ANY "/" request home))

The request in the preceding route is simply a map that’s described in What's
in the Request Map, on page ?.

A set of keys defined by the Liberator application programming interface
represents each resource. Specific actions are in turn associated with each
key. A key can fall into one of four categories:

• Decision
• Handler
• Action
• Declaration

Each key can be associated with either constants or functions. The functions
should accept a single parameter that is the current context, and return a
variety of responses.

The context parameter contains a map with keys for the request, the resource,
and optionally the representation. The request key points to the Ring request.
The resource represents the current state of the resource, and the represen-
tation contains the results of content negotiation.

Let’s take a close look at each of the categories and their purposes.

• Click HERE to purchase this book now. discuss

Defining Resources • 7

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

Making Decisions

The decisions are used to figure out how to handle the client request. The
decision keys end with a question mark (?) and their handler must evaluate
to a Boolean value.

A decision function can return a Boolean value indicating the result of the
decision, or it can return a map or a vector. In case a map is returned, the
decision is assumed to have been evaluated to true and the contents of the
map are merged with the response map. In case a vector is returned, it must
contain a Boolean indicating the outcome, followed by a map to be merged
with the response.

When any decision has a negative outcome, its corresponding HTTP code will
be returned to the client. For example, if we wanted to mark as unavailable
the route we defined earlier, we could add a decision key called service-available?
and associate it with a false value:

liberator-snippets/home.clj
(defresource home

:service-available? false
:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

If we reload the page we’ll see the 503 response type associated with the
Service not available response.

Alternatively, we could restrict access to the resource by using the method-
allowed? decision key along with a decision function.

(defresource home
:method-allowed?
(fn [context]

(= :get (get-in context [:request :request-method])))
:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

Since checking the request method is a common operation, Liberator provides
a key called :allowed-methods. This key should point to a vector of keywords
representing the HTTP methods.

(defresource home
:allowed-methods [:get]
:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

Chapter 3. Liberator Services • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

We can also combine multiple decision functions in the same resource, as
seen here:

liberator-snippets/home.clj
(defresource home

:service-available? true

:method-allowed? (request-method-in :get)

:handle-method-not-allowed
(fn [context]

(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

Creating Handlers

A handler function should return a standard Ring response. Handler keys
start with the handle- prefix. We saw a handler function when we used the
handle-ok key to return the response in our resource.

There are other handlers, such as handle-method-not-allowed and handle-not-found.
The full list of handlers can be found on the official documentation page.4

These handlers can be used in conjunction with the decisions to return a
specific response for a particular decision outcome.

For example, if we wanted to return a specific response when the service is
not available, we could do the following:

liberator-snippets/home.clj
(defresource home

:service-available? false
:handle-service-not-available
"service is currently unavailable..."

:method-allowed? (request-method-in :get)
:handle-method-not-allowed
(fn [context]

(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

Our resource now has custom handlers for each decision outcome.

4. http://clojure-liberator.github.io/liberator/doc/handlers.html

• Click HERE to purchase this book now. discuss

Defining Resources • 9

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://clojure-liberator.github.io/liberator/doc/handlers.html
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

Taking Actions

An action represents an update of the current state by the client, such as a
PUT, POST, or DELETE request. The action keys end with an exclamation
point (!) to indicate that they’re mutating the application’s internal state.

Once an action occurs, we can return the result to the client using the handle-
created handler.

Writing Declaration

Declarations are used to indicate the resource’s capabilities. For example,
our resource uses the available-media-types declaration to specify that it returns
a response of type text/plain. Another declaration we saw is the etag, allowing
the client to cache the resource.

Putting It All Together

Let’s look at an example of a service that has a couple of resources that allow
the client to read and store some data.

The application will display a list of users and allow the client to add additional
users to the list. The client will be implemented in JavaScript and use Ajax
to communicate with the service.

To start, let’s create a static HTML page in our public directory and call it
home.html. The page contents will look like this:

liberator-snippets/home.html
<html>

<head>
<title>Liberator Example</title>
<script type="text/javascript"

src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js">
</script>

<script type="text/javascript">
function renderUsers(users) {

$('#user-list').empty();
for(user in users)

$('#user-list').append($('', {html: users[user]}));
}
function getUsers() {

$.get("/users", renderUsers);
}
function addUser() {

$.post("/add-user", {user: $('#name').val()}, renderUsers);
}

Chapter 3. Liberator Services • 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.html
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

$(function() {getUsers();});
</script>

</head>

<body>
<h1>Current Users</h1>

<ul id="user-list">
<input type="text" id="name" placeholder="user name"/>
<button onclick="addUser()">Add User</button>

</body>

</html>

The page contains functions to render a list of users from given a JSON array,
get the current users from the /users URI, and add a new user via the /add-user
URI. In addition we have a user-list placeholder for displaying the users, and
a text field along with the Add User button for adding new users. The page
should look like the following image.

We’ll now create corresponding resources to handle each of the operations.
To serve the data as JSON we’ll first have to add a reference to
cheshire.core/generate-string in the declaration of our home namespace:

(ns liberator-service.routes.home
(:require ...

[cheshire.core :refer [generate-string]]))

Next we’ll create an atom to hold the list of users:

(def users (atom ["John" "Jane"]))

The first resource will respond to GET requests and return the contents of
the users atom as JSON.

• Click HERE to purchase this book now. discuss

Putting It All Together • 11

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

liberator-service/src/liberator_service/routes/home.clj
(defresource get-users

:allowed-methods [:get]
:handle-ok (fn [_] (generate-string @users))
:available-media-types ["application/json"])

In the resource, we use the :allowed-methods key to restrict it to only serve GET
requests. We use the available-media-types declaration to specify that the response
is of type application/json. The resource will generate a JSON string from our
current list of users when called.

The second resource will respond to POST and add the user contained in the
form-params to the list of users. It will then return the new list:

liberator-snippets/home.clj
(defresource add-user

:method-allowed? (request-method-in :post)
:post!
(fn [context]

(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))

:handle-created (fn [_] (generate-string @users))
:available-media-types ["application/json"])

Here we check that the method is POST, and use the post! action to update
the existing list of users. We then use the handle-created handler to return the
new list of users to the client.

Note that with the resource just detailed, the handle-created value must be a
function.

The following resource will compile without errors. However, when it runs
you’ll see the old value of users. This is because (generate-string@users) is evaluated
before the decision graph is run.

liberator-snippets/home.clj
(defresource add-user

:method-allowed? (request-method-in :post)
:post!
(fn [context]

(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))

:handle-created (generate-string @users)
:available-media-types ["application/json"])

It is therefore important to ensure that you provide the :handle-created key with
a function that will be run when the decision graph is executed, as we did in
the original example.

Chapter 3. Liberator Services • 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

You’ll notice that nothing is preventing us from adding a blank user. Let’s
add a check in our service to validate the request to add a new user:

liberator-service/src/liberator_service/routes/home.clj
(defresource add-user

:allowed-methods [:post]
:malformed? (fn [context]

(let [params (get-in context [:request :form-params])]
(empty? (get params "user"))))

:handle-malformed "user name cannot be empty!"
:post!
(fn [context]

(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))

:handle-created (fn [_] (generate-string @users))
:available-media-types ["application/json"])

Now, if the value of the user parameter is empty, we’ll be routed to handle-mal-
formed, which will inform the client that the user name cannot be empty. Next
time we try to add an empty user, we’ll see a 400 error in the browser:

POST http://localhost:3000/add-user 400 (Bad Request)

We can now update our page to handle the error and display the message,
as follows:

liberator-snippets/home1.html
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Liberator Example</title>

<script type="text/javascript"
src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js">

</script>

<script type="text/javascript">
function renderUsers(users) {

$('#user-list').empty();
for(user in users)
$('#user-list').append($('', {html: users[user]}));

}

function getUsers() {
$.get("/users", renderUsers);

}

function handleError(xhr) {
$('#error').text(xhr.statusText + ": " + xhr.responseText);

}

• Click HERE to purchase this book now. discuss

Putting It All Together • 13

http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home1.html
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

function addUser() {
var jqxhr = $.post("/add-user", {user: $('#name').val()}, renderUsers)

.fail(handleError);
}

$(function() {getUsers();});
</script>

</head>
<body>

<h1>Current Users</h1>
<p id="error"></p>
<ul id="user-list">
<input type="text" id="name" placeholder="user name"/>
<button onclick="addUser()">Add User</button>

</body>
</html>

Now, if we click the Add User button without filling in the user name field
we’ll see the following error:

As a final touch, let’s add a home resource that will serve our home.html file.
To do that we’ll add the lib-noir dependency to our project.clj:

:dependencies [... [lib-noir "0.7.2"]]

Next we’ll add references to noir.io and clojure.java.io to the home namespace
declaration:

(ns liberator-service.routes.home
(:require [...

[noir.io :as io]
[clojure.java.io :refer [file]]))

Now we can create a new resource called home that will serve the home.html
file:

Chapter 3. Liberator Services • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

liberator-service/src/liberator_service/routes/home.clj
(defresource home

:available-media-types ["text/html"]

:exists?
(fn [context]
[(io/get-resource "/home.html")
{::file (file (str (io/resource-path) "/home.html"))}])

:handle-ok
(fn [{{{resource :resource} :route-params} :request}]
(clojure.java.io/input-stream (io/get-resource "/home.html")))

:last-modified
(fn [{{{resource :resource} :route-params} :request}]
(.lastModified (file (str (io/resource-path) "/home.html")))))

The resource will check whether the file exists and when it was last modified.
If the file isn’t available then io/get-resource will return a nil and the client will
get a 404 error. If the file wasn’t changed since the last request, the client
will be returned a 304 code instead of the file, indicating that it wasn’t
modified.

Thanks to this check, the file will be served only if it exists and we made
changes to it since it was last requested. We can now add a route to serve
home.html as our default resource:

(ANY "/" request home)

Our home namespace containing the service counterparts to the page should
look like this:

liberator-service/src/liberator_service/routes/home.clj
(ns liberator-service.routes.home

(:require [compojure.core :refer :all]
[liberator.core :refer [defresource resource]]
[cheshire.core :refer [generate-string]]
[noir.io :as io]
[clojure.java.io :refer [file]]))

(defresource home
:available-media-types ["text/html"]

:exists?
(fn [context]
[(io/get-resource "/home.html")
{::file (file (str (io/resource-path) "/home.html"))}])

:handle-ok
(fn [{{{resource :resource} :route-params} :request}]
(clojure.java.io/input-stream (io/get-resource "/home.html")))

:last-modified

• Click HERE to purchase this book now. discuss

Putting It All Together • 15

http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

(fn [{{{resource :resource} :route-params} :request}]
(.lastModified (file (str (io/resource-path) "/home.html")))))

(def users (atom ["foo" "bar"]))
(defresource get-users

:allowed-methods [:get]
:handle-ok (fn [_] (generate-string @users))
:available-media-types ["application/json"])

(defresource add-user
:allowed-methods [:post]
:malformed? (fn [context]

(let [params (get-in context [:request :form-params])]
(empty? (get params "user"))))

:handle-malformed "user name cannot be empty!"
:post!
(fn [context]

(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))

:handle-created (fn [_] (generate-string @users))
:available-media-types ["application/json"])

(defroutes home-routes
(ANY "/" request home)
(ANY "/add-user" request add-user)
(ANY "/users" request get-users))

As you can see, Liberator ensures separation of concerns by design. With the
Liberator model you will have small self-contained functions, each of which
handles a specific task.

What You’ve Learned

So far we’ve been focusing on the server-client-interaction portion of the
application. In the next chapter we’ll take a deeper look at connecting to and
working with databases.

Chapter 3. Liberator Services • 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

