
Extracted from:

Web Development with Clojure
Build Bulletproof Web Apps with Less Code

This PDF file contains pages extracted from Web Development with Clojure, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Web Development with Clojure
Build Bulletproof Web Apps with Less Code

Dmitri Sotnikov

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-64-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2014

http://pragprog.com

Introduction
This book’s cover has a bonsai tree on it. I chose it to represent elegance and
simplicity, as these qualities make Clojure such an attractive language. A
good software project is like a bonsai. You have to meticulously craft it to
take the shape you want, and the tool you use should make it a pleasant
experience. I hope to convince you here that Clojure is that tool.

What You Need

This book is aimed at readers of all levels. While having some basic proficiency
with functional programming will be helpful, it’s by no means required to
follow the material in this book. If you’re not a Clojure user already, this book
is a good starting point, as it focuses on applying the language to solve con-
crete problems. This means we’ll focus on a small number of language features
needed to build common web applications.

Why Clojure?

Clojure is a small language that has simplicity and correctness as its primary
goals. Being a functional language, it emphasizes immutability and declarative
programming. As you’ll see in this book, these features make it easy and
idiomatic to write clean and correct code.

There are many languages to choose from and as many opinions on what
makes any one of them a good language. Some languages are simple but
verbose. You’ve probably heard people say that verbosity really doesn’t matter,
the argument being that when two languages are Turing complete, anything
that can be written in one language can also be written in the other with a
bit of extra code.

I think that’s missing the point, however. The real question is not whether
something can be expressed in principle. It’s how well the language maps to
the problem being solved. One language will let you think in terms of your
problem domain while another will force you to translate the problem to its
constructs.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

The latter is often tedious and rarely enjoyable. You end up writing a lot of
boilerplate code and constantly repeating yourself. There’s a certain amount
of irony involved in having to write repetitive code.

Other languages aren’t verbose and they provide many different tools for
solving problems. Unfortunately, having many tools does not directly translate
into higher productivity.

The more features there are, the more things you have to keep in your head
to work with the language effectively. With many languages I find myself
constantly expending mental overhead thinking about all the different features
and how they interact with one another.

What matters to me in a language is whether I can use it without thinking
about it. When a language is lacking in expressiveness I’m acutely aware that
I’m writing code that I shouldn’t be. On the other hand, when a language has
too many features I often feel overwhelmed or I get distracted playing with
them.

To make an analogy with mathematics, having a general formula that you
can derive others from is better than having to memorize a whole bunch of
formulas for specific problems.

This is where Clojure comes in. It allows us to easily derive a solution to a
particular problem from a small set of general patterns. All you need to become
productive is to learn a few simple concepts and a bit of syntax. These concepts
can then be combined in a myriad ways to solve all kinds of problems.

Why Make Web Apps in Clojure?

Clojure boasts tens of thousands of users; it’s used in a wide range of settings,
including banks and hospitals. Clojure is likely the most popular Lisp dialect
today for starting new development. Despite being a young language, it has
proven itself in serious production systems and the feedback from users has
been overwhelmingly positive.

As web development is one of the major domains for using Clojure, several
popular libraries and frameworks have sprouted in this area. The Clojure web
stack is based on the Ring and Compojure libraries.1,2 Ring is the base HTTP
library, while Compojure provides routing on top of it. In the following chapters
you’ll become familiar with the web stack and how to use it effectively to build
your web applications.

1. https://github.com/ring-clojure/ring
2. https://github.com/weavejester/compojure

Introduction • vi

• Click HERE to purchase this book now. discuss

https://github.com/ring-clojure/ring
https://github.com/weavejester/compojure
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

There are many platforms for doing web development, so why should you
choose Clojure over other options?

Well, consider those options. Many popular platforms force you to make trade-
offs. Some platforms lack performance, others require a lot of boilerplate, and
others lack the infrastructure necessary for real-world applications.

Clojure addresses the questions of performance and infrastructure by being
a hosted language. The Java Virtual Machine is a mature and highly perfor-
mant environment with great tooling and deployment options. Clojure brings
expressive power akin to that of Ruby and Python to this excellent platform.
When working with Clojure you won’t have to worry about being limited by
your runtime when your application grows.

The most common way to handle the boilerplate in web applications is by
using a framework. There are many frameworks, such as Ruby on Rails,
Django, and Spring. The frameworks provide canned functionality needed for
building a modern site.

The benefits the frameworks offer also come with inherent costs. Since many
operations are done implicitly, you have to memorize what effects any action
might have. This opaqueness makes your code more difficult to reason about.
When you need to do something that is at odds with the framework’s design
it can quickly become awkward and difficult. You might have to dive deep
into the internals of the particular framework and create hacks around the
expected behaviors.

So instead of using frameworks, Clojure makes a number of powerful libraries
available, and we can put these libraries together in a way that makes sense
for our particular project. As you’ll see, we manage to avoid having to write
boilerplate while retaining the code clarity we desire. As you read on I think
you’ll agree that this model has clear advantages over the framework-based
approach.

My goal is to give you both a solid understanding of the Clojure web stack
and the expertise to quickly and easily build web applications using it. The
following chapters will guide you all the way from setting up your development
environment to having a complete real-world application. I will show what’s
available, then guide you in structuring your application using the current
best practices.

• Click HERE to purchase this book now. discuss

Why Make Web Apps in Clojure? • vii

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

