Extracted from:

Web Development with Clojure

Build Bulletproof Web Apps with Less Code

This PDF file contains pages extracted from Web Development with Clojure, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-
back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic

ogrammers

Web Development with
lojure

Build Bulletproof Web Apps
with Less Code

Dmitri Sotnikov
edited by Michael Swaine

Web Development with Clojure

Build Bulletproof Web Apps with Less Code

Dmitri Sotnikov

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-64-2

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—January 2014

http://pragprog.com

Setting Up Your Environment

Clojure requires the Java Virtual Machine (JVM) to run, and you will need a
working Java Development Kit, version 1.6 or higher.' Clojure distribution is
provided as a JAR that simply needs to be available on your project’s class-
path. Clojure applications can be built with the standard Java tools, such as
Maven and Ant;*® however, I strongly recommend that you use Leiningen,*
which is designed specifically for Clojure.

Managing Projects with Leiningen

Leiningen lets you create, build, test, package, and deploy your projects. In
other words, it’s your one-stop shop for all your project-management-related
needs.

Leiningen is the Clojure counterpart of Maven, a popular tool for managing
Java dependencies. Leiningen is compatible with Maven, so it has access to
large and well-maintained repositories of Java libraries. In addition, Clojure
libraries are commonly found in the Clojars repository.® This repository is, of
course, enabled by default in Leiningen.

With Leiningen, you don’t need to worry about manually downloading all the
libraries for your project. You can simply specify the top-level dependencies,
and they will cause the libraries they depend on to be pulled in automatically.

Installing Leiningen is as simple as downloading the installation script from
the official project page and running it.°

Let’s test this. We'll create a new project by downloading the script and run-
ning the following commands:

wget https://raw.github.com/technomancy/leiningen/stable/bin/lein

chmod +x lein

mv lein ~/bin
lein new myapp

Since we're running lein for the first time, it will need to install itself. Once
the install is finished you should see the following output if the command
completes successfully:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

A e

« Click HERE to purchase this book now. discuss

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/
http://ant.apache.org/
http://leiningen.org/
https://clojars.org/
http://leiningen.org/#install
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

2

Generating a project called myapp based on the 'default' template.
To see other templates (app, lein plug-in, etc), try “lein help new’.

A new folder called myapp has been created, containing a skeleton application.
The code for the application can be found in the src folder. There we’ll have
another folder called myapp containing a single source file named core.clj. This
file has the following code inside:

(ns myapp.core)

(defn foo
"I don't do a whole lot."
[x]
(println x "Hello, World!"))

Note that the namespace declaration matches the folder structure. Since the
core namespace is inside the myapp folder, its name is myapp.core.

What's in the Leiningen Project File

Inside the myapp project folder we have a project.clj file. This file contains the
description of our application. With close scrutiny, you’ll see that this file is
written using standard Clojure syntax and contains the application name,
version, URL, license, and dependencies.

(defproject myapp "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
:url "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.5.1"11])

The project.clj file will allow us to manage many different aspects of our appli-
cation, as well. For example, we could set the foo function from the myapp.core
namespace as the entry point for the application using the :main key:

(defproject myapp "0O.1.0-SNAPSHOT"

:description "FIXME: write description"

:url "http://example.com/FIXME"

:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}

:dependencies [[org.clojure/clojure "1.5.1"]]

;,this will set foo as the main function

:main myapp.core/foo)

The application can now be run from the command line using lein run. Since
the foo function expects an argument, we’ll have to pass one in:

lein run First
First Hello, World!

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

Setting Up Your Environment ¢ 3

In the preceding example we created a very simple application that has only
a single dependency: the Clojure runtime. If we used this as the base for a
web application, then we’d have to write a lot of boilerplate to get it up and
running. Let’s see how we can use a Leiningen template to create a web-
application project with all the boilerplate already set up.

Leiningen Templates

The templates consist of skeleton projects that are instantiated when the
name of the template is supplied to the lein script. The templates themselves
are simply Clojure projects that use the lein-newnew plug-in.” Later on we’ll
see how we can create such templates ourselves.

For now, we’ll use the compojure-app template to instantiate our next applica-
tion.® The template name is specified as the argument following the new
keyword when running lein, followed by the name of the project. To make a
web application instead of the default one as we did a moment ago, we only
have to do the following:

lein new compojure-app guestbook

This will cause Leiningen to use the compojure-app template when creating
the guestbook application. This type of application needs to start up a web
server in order to run. To do that we can run lein ring server instead of lein run.

When we run the application, we’ll see the following output in the console
and a new browser window will pop up showing the home page.

lein ring server

guestbook is starting

2013-07-14 18:21:06.603:INFO:0ejs.Server:jetty-7.6.1.v20120215
2013-07-14 18:21:06.639:INF0:0ejs.AbstractConnector:
StartedSelectChannelConnector@d.0.0.0:3000

Started server on port 3000

Now that we know how to create and run our applications, we’ll look at our
editor options.

You might have noticed that Clojure code can quickly end up having lots of
parentheses. Keeping them balanced by hand would quickly turn into an
exercise in frustration. Luckily, Clojure editors will do this for us.

In fact, not only do the editors balance the parentheses, but some are even
structurally aware. This means the editor knows where one expression ends

7. https://github.com/Raynes/lein-newnew

« Click HERE to purchase this book now. discuss

https://github.com/Raynes/lein-newnew
https://github.com/yogthos/compojure-template
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

°4

and another begins. Therefore, we can navigate and select code in terms of
blocks of logic instead of lines of text.

In this chapter we’ll be using Light Table to work with our guestbook applica-
tion.’ It's very easy to get up and running and will allow us to quickly dive
into writing some code. However, its functionality is somewhat limited and
you may find it insufficient for larger projects. Alternative development envi-
ronments are discussed in Appendix 1, Alternative IDE Options, on page ?.

Using Light Table

Light Table does not require any installation and we can simply run the exe-
cutable after it’s downloaded.

Light Table offers a very minimal look. By default it simply shows the editor
pane with the welcome message (see the following figure).

800 Light Table e

LIGHT TABLC

Welcome to the latest version of Light Table. To see the full list of
what's been added/changed, checkout the _ Some of
the highlights include deeper Javascript support, inline browsers,
and Python eval! If you're new, you might want to take a look at

'Light Table's docs to get started.

1/1

Figure 1—Light Table workspace

We’'ll add the workspace pane from the menu by selecting View -> Workspace
or pressing Ctrl-T on Windows/Linux or Cmd-T on OS X.

From there we can open the guestbook project by navigating to the Folder
tab on the top left, as the following figure shows.

9. http://www.lighttable.com/

« Click HERE to purchase this book now. discuss

http://www.lighttable.com/
http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

Setting Up Your Environment ¢ 5

T 1/1

Figure 2—Opening a project

Once the project is selected we can navigate the project tree and select files
we wish to edit (see the following figure).

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

*6

(ns guestbook.routes.home
T (:reguire [compojure.core :refer :all]
[guestbook.views.layout :as layout]))

(defn home []
{layout/common [:hl "Hello World!"]1))

(defroutes home-routes
(GET "/" [] (home)))

@ 1/1

Figure 3—Light Table project

Now that we have our development environment set up, we can finally look
at adding some functionality to our guestbook application.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj
http://forums.pragprog.com/forums/dswdcloj

