
Extracted from:

Web Development with Clojure,
2nd Edition

Build Bulletproof Web Apps with Less Code

This PDF file contains pages extracted from Web Development with Clojure, 2nd
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Web Development with Clojure,
2nd Edition

Build Bulletproof Web Apps with Less Code

Dmitri Sotnikov

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Candace Cunningham, Molly McBeath (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-082-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 6

Writing RESTful Web Services
In the last chapter, we saw how we can leverage ClojureScript on the client
to handle the UI state. This allowed us to refactor our server-side code into
stateless service operations. However, our services were declared in ad-hoc
fashion using an arbitrary convention. While this approach works fine for
small applications, it doesn’t scale well for situations where we have many
service operations and many common concerns, such as authentication, that
are shared between them. In this chapter we’ll cover how to use a library
called compojure-api to provide some structure for our service end points.1

Use Compojure-api
Having a well-documented and discoverable service API is key to building a
stable and maintainable application. Let’s see how Compojure-api allows us
to achieve this goal. The Schema library is used to define the Swagger-style
RESTful service end points.2,3 Schema provides us with a number of benefits,
such as documentation for the structure of the data, input validation, and
optional data coercion. Couple this with the Ring-Swagger library and we can
automatically generate an interactive documentation page for our API.4

Let’s see how this all works in practice by working through a new project.
The goal of our project will be to entertain the users with an endless stream
of cat pictures. Luckily for us, a public API exists for just such an occasion
—the Cat API site.5 Our app will fetch the cat picture links from there and
use these links to display the pictures on the page using ClojureScript.

1. https://github.com/metosin/compojure-api
2. https://github.com/plumatic/schema
3. http://swagger.io/
4. https://github.com/metosin/ring-swagger
5. http://thecatapi.com/docs.html

• Click HERE to purchase this book now. discuss

https://github.com/metosin/compojure-api
https://github.com/plumatic/schema
http://swagger.io/
https://github.com/metosin/ring-swagger
http://thecatapi.com/docs.html
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

Let’s create the project with the +swagger and the +cljs profiles. The first flag
adds the boilerplate for using Compojure-api, and the second enables Clojure-
Script support out of the box.

lein new luminus swagger-service +swagger +cljs

The project has a couple of sample routes already set up for us. Let’s take a
look at these to get a taste for how Compojure-api works. The generated routes
can be found in the swagger-service.routes.services namespace. We can see that
routes are declared using Compojure-api helpers such as compojure.api.sweet/GET,
as opposed to the compojure.core/GET that we used previously. The syntax for
these end points is similar to the standard Compojure syntax except that it
also requires us to annotate each service operation, as seen here:

(GET "/plus" []
:return Long
:query-params [x :- Long, {y :- Long 1}]
:summary "x+y with query-parameters. y defaults to 1."
(ok (+ x y)))

The service routes are wrapped using the context macro that sets the base
path as /api for all the routes inside it. The macro also specifies a :tags key that
contains the metadata for grouping the routes in the generated documentation.

Each service route must declare its return type and the types of its parameters,
and it must provide a description of its functionality. We can further see that
we must specify where the parameters are found in the request. We specify
:query-params for the URL query parameters, :body-params when the parameters
are part of the request body, and :path-params when the parameters are part of
the request path. Alternatively, we can specify the :body key that points to the
description of the request body.

This is seen in the last two /echo routes:

(PUT "/echo" []
:return [{:hot Boolean}]
:body [body [{:hot Boolean}]]
:summary "echoes a vector of anonymous hotties"
(ok body))

(POST "/echo" []
:return Thingie
:body [thingie Thingie]
:summary "echoes a Thingie from json-body"
(ok thingie))

The :body key points to a vector that has the symbol name on the left and the
type on the right. The request body is checked against the type specified and

Chapter 6. Writing RESTful Web Services • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

bound to the supplied name. The first route creates an anonymous inline
schema definition, while the second uses the schema element that’s defined
at the top of the namespace.

The :return key specifies the type returned by the function. This can be a simple
type, such as Long, or a complex schema, such as the Thingie in the example.

We can also see that the first argument to service-routes is a configuration map.
This map specifies the routes for the JSON API, a Swagger UI test page, and
the description metadata for the services.

{:swagger {:ui "/swagger-ui"
:spec "/swagger.json"
:data {:info {:version "1.0.0"

:title "Sample API"
:description "Sample Services"}}}}

Let’s start the application and see what the generated documentation looks
like by executing lein run in the terminal. Navigate to http://local-
host:3000/swagger-ui/index.html, where you should see a page listing the
API end points defined in our services namespace.

We can try out the services directly from the page and see how they behave.
Note that we’re able to call services that use the HTTP POST method without
getting the anti-forgery errors we saw in the last chapter. Since anti-forgery
protection only makes sense for pages generated by the server, it’s not appli-
cable to public API end points. Therefore, the generated service-routes are not
wrapped using the wrap-csrf middleware and are exempt from CSRF checks.

swagger-service/src/clj/swagger_service/handler.clj

(def app-routes
(routes

#'service-routes
(wrap-routes #'home-routes middleware/wrap-csrf)
(route/not-found
(:body

(error-page {:status 404
:title "page not found"})))))

Now that we’ve seen a few examples of how Compojure-api works, let’s go
ahead and write a service end point using it.

Creating the API
As the first step, let’s see how we can connect to the REST API provided by
the Cat API site and extract the content that we need.

• Click HERE to purchase this book now. discuss

Creating the API • 7

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/handler.clj
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

Parsing Cat Picture Links
In order to fetch our links, we need to create an HTTP client. Let’s use the
excellent clj-http library for this task.6 As always, we start by adding the
dependency to our project.clj file.

:dependencies [... [clj-http "2.0.0"]]

Note that if your application is running, you need to restart it in order for the
library to become available.

With the library in place, we can navigate to the swagger-service.routes.services
namespace and add the code for reading the links. Let’s first reference it in
our namespace as client.

(:require ...
[clj-http.client :as client])

Let’s test getting some data back from the service by writing this function:

(defn get-links [link-count]
(client/get

(str
"http://thecatapi.com/api/images/get?format=xml&results_per_page="
link-count)))

The function calls the HTTP GET method on the remote server and requests
the results packaged using the XML format. We pass in the number of results
to fetch as a parameter. When we call the function in the REPL, we should
see something like the following as the result:

(get-links 3)
=>
{:status 200
:headers {"Date" "Sun, 15 Nov 2015 07:00:35 GMT"

"Server" "Apache"
"X-Powered-By" "PHP/5.4.45"
"Connection" "close"
"Transfer-Encoding" "chunked"
"Content-Type" "text/xml"}

:body
"<?xml version=\"1.0\"?>
<response>

<data>
<images>




</images>

</data>
</response>\n"
:request-time 681
:trace-redirects
["http://thecatapi.com/api/images/get?format=xml&results_per_page=3"]
:orig-content-encoding nil}

As you can see, the result consists of a map representing the HTTP response
from the server. The :body key of this map contains the XML describing the
links to the cat pictures that we want. Now that we’re getting the data from
the remote server, we need a way to parse out the links from it.

Clojure provides the clojure.xml namespace for working with XML data. This
namespace contains the parse function that can be used to turn an XML input
stream into a Clojure data structure. We need to reference the clojure.xml and
the clojure.java.io namespaces to create an input stream from the response string
and then parse it.

(:require ...
[clojure.java.io :as io]
[clojure.xml :as xml])

With the namespaces referenced, write the parse-xml function that takes the
XML string as the input, gets the byte array from the string, wraps it with an
input stream, and passes it to the clojure.xml/parse function to extract the data.

swagger-service/src/clj/swagger_service/routes/services.clj

(defn parse-xml [xml]
(-> xml .getBytes io/input-stream xml/parse))

We can now update the get-links function to parse the XML result as follows:

• Click HERE to purchase this book now. discuss

Creating the API • 9

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

(defn get-links [link-count]
(-> "http://thecatapi.com/api/images/get?format=xml&results_per_page="

(str link-count)
client/get
:body
parse-xml))

When we call the function again, we see a Clojure data structure as the result.

(get-links 1)
=>
{:tag :response,
:attrs nil,
:content
[{:tag :data,

:attrs nil,
:content
[{:tag :images,

:attrs nil,
:content
[{:tag :image,

:attrs nil,
:content
[{:tag :url,

:attrs nil,
:content
["http://25.media.tumblr.com/tumblr_m4371fTcUo1qb4lb6o1_500.jpg"]}

{:tag :id, :attrs nil, :content ["ddk"]}
{:tag :source_url,
:attrs nil,
:content ["http://thecatapi.com/?id=ddk"]}]}]}]}]}

All we have to do now is parse out the :url tags from the :image tags in the data.
We can accomplish that by writing a few helper functions.

swagger-service/src/clj/swagger_service/routes/services.clj

(defn get-first-child [tag xml-node]
(->> xml-node :content (filter #(= (:tag %) tag)) first))

(defn parse-link [link]
(->> link (get-first-child :url) :content first))

(defn parse-links [links]
(->> links

(get-first-child :data)
(get-first-child :images)
:content
(map parse-link)))

Chapter 6. Writing RESTful Web Services • 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

While XML format allows for multiple tags in the :content, most of the tags in
the structure we’re working with only have a single child node. The get-first-
child function is used to extract these tags by their name. Once we parse out
the collection of links, we can map the parse-link function across them to get
the actual URL strings.

We can now update the get-links function to call parse-links to extract the links
from the XML structure.

swagger-service/src/clj/swagger_service/routes/services.clj

(defn get-links [link-count]
(-> "http://thecatapi.com/api/images/get?format=xml&results_per_page="

(str link-count)
client/get
:body
parse-xml
parse-links))

Finally, you might have noticed that the app produces a very noisy log in the
console each time we call the client/get function. The log should look something
like the following:

[2016-02-02 19:12:17,802][DEBUG][org.apache.http.wire]
>> "GET /api/images/get?format=xml&results_per_page=50 HTTP/1.1[\r][\n]"
[2016-02-02 19:12:17,803][DEBUG][org.apache.http.wire]
>> "Connection: close[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire]
>> "accept-encoding: gzip, deflate[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire]
>> "Host: thecatapi.com[\r][\n]"
[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire
>> "User-Agent: Apache-HttpClient/4.5 (Java/1.8.0_25)[\r][\n]"

[2016-02-02 19:12:17,804][DEBUG][org.apache.http.wire]
>> "[\r][\n]"

The reason is that the global logging configuration is set to debug level in the
development mode. This causes any libraries we use to log at this level as
well. However, we can easily fix this problem by adding an exclusion for
org.apache.http in the log configuration. Let’s open the env/dev/resources/log4j.properties
file and add the following line there:

log4j.logger.org.apache.http=INFO

When we restart the app, the noisy logs should now be gone. The line says
that we would like to configure the logger for the org.apache.http package to use
info level rather than debug level. Any time you see the logs get noisy, you
can use this method to suppress the logs for the particular package.

• Click HERE to purchase this book now. discuss

Creating the API • 11

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

Creating the API
All that’s left to do is to create a compojure-api route for this operation. At this
point we can safely remove the existing sample end points from the namespace.
Let’s replace these with an end point that accepts the number of links to fetch
as the argument and return a collection of link strings as its result. The
response will be of type [s/Str].

swagger-service/src/clj/swagger_service/routes/services.clj

(defapi service-routes
{:swagger
{:ui "/swagger-ui"
:spec "/swagger.json"
:data {:info {:title "cat link api"

:version "1.0.0"
:description "cats api"}

:tags [{:name "thecatapi", :description "cat's api"}]}}}
(context "/api" []

:tags ["thecatapi"]
(GET "/cat-links" []
:query-params [link-count :- Long]
:summary "returns a collection of image links"
:return [s/Str]
(ok (get-links link-count)))))

Since we’re using a GET operation, the input parameter is parsed as a string
by default. However, compojure-api provides autocoercion for many common
data types, such as UUIDs, integers, longs, and Booleans. Therefore, the
argument is coerced automatically to the expected type.

Finally, we can test that our service works as expected by visiting the local-
host:3000/swagger-ui/index.html#!/thecatapi/get_api_cat_links page and testing the GET
method that we created. We should see something like the figure on page 13.

Next let’s take a look at using a ClojureScript client with the Compojure-api
service we’ve just created.

Adding the UI
Now that we have all these exciting links to amazing cat pictures, it would be
nice for us to actually see them. Let’s navigate to the src/cljs/swagger_service/core.cljs
file and add the code to fetch them from the server and display them there.
Let’s partition the list of URLs that we get from the server and then create
pages, each displaying a subset of images.

The lein-cljsbuild plugin we used previously requires us to reload the page each
time the sources are recompiled.

Chapter 6. Writing RESTful Web Services • 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/clj/swagger_service/routes/services.clj
localhost:3000/swagger-ui/index.html#!/thecatapi/get_api_cat_links
localhost:3000/swagger-ui/index.html#!/thecatapi/get_api_cat_links
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

When we created our current project, we used the +cljs flag that added Clo-
jureScript support for us. This profile adds a more sophisticated way to
compile ClojureScript using the lein-figwheel plugin.7 This plugin not only
compiles the code but also reloads it in the browser as it changes.

Compiling ClojureScript with Figwheel

With lein-figwheel, the changes are pushed to the browser using a WebSocket
and are reflected live without the need to reload the page. Start the server
and navigate to http://localhost:3000 once it’s ready.

lein run

7. https://github.com/bhauman/lein-figwheel

• Click HERE to purchase this book now. discuss

Creating the API • 13

https://github.com/bhauman/lein-figwheel
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

Now you should see the following page, stating that you need to run lein figwheel
to compile our ClojureScript sources:

When you run the command you should see the following output in the con-
sole. The last line in the output tells us that Figwheel is waiting to connect
to the application in the browser.

lein figwheel
Figwheel: Starting server at http://localhost:3449
Focusing on build ids: app
Compiling "target/cljsbuild/public/js/app.js" from ["src/cljs" "env/dev/cljs"]...
Successfully compiled "target/cljsbuild/public/js/app.js" in 8.719 seconds.
Started Figwheel autobuilder

Launching ClojureScript REPL for build: app
Figwheel Controls:
(stop-autobuild) ;; stops Figwheel autobuilder
(start-autobuild [id ...]) ;; starts autobuilder focused on optional ids
(switch-to-build id ...) ;; switches autobuilder to different build
(reset-autobuild) ;; stops, cleans, and starts autobuilder
(build-once [id ...]) ;; builds source one time
(clean-builds [id ..]) ;; deletes compiled cljs target files
(fig-status) ;; displays current state of system
(add-dep [org.om/om "0.8.1"]) ;; add a dependency. very experimental
Switch REPL build focus:
:cljs/quit ;; allows you to switch REPL to another build
Docs: (doc function-name-here)
Exit: Control+C or :cljs/quit
Results: Stored in vars *1, *2, *3, *e holds last exception object
Prompt will show when figwheel connects to your application

Once you reload the page you should see a navbar and a “Welcome to Clojure-
Script” message on the page. These elements were generated by the compiled
ClojureScript, as seen in the figure on page 15.

We can now navigate to the src/cljs/swagger_service/core.cljs file that contains our
swagger-service.core ClojureScript namespace and start editing it. Any changes
we make will be reflected live in the browser. For example, let’s change the
content of the home-page function as follows:

(defn home-page []
[:div
[:h2 "Welcome to ClojureScript"]
[:p "live code reloading is fun!"]])

Chapter 6. Writing RESTful Web Services • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

Note that any compilation errors or warnings are displayed directly on the
page, as seen in the figure on page 16.

At mentioned earlier, Figwheel uses a WebSocket to push the code to the
browser. The socket requires additional code to be run when the ClojureScript
application starts. This code should only be run in development mode, not
in production mode.

In order to automate loading different environments for development and
production, the template sets up env/dev and env/prod source paths. The dev
path is then included in the :dev profile and the prod path is included in the
:uberjar profile in the project.clj file.

The env/dev/cljs/dev.cljs file contains the namespace that’s the entry point for our
ClojureScript application and has the following contents.

swagger-service/env/dev/cljs/swagger_service/dev.cljs

(ns ^:figwheel-no-load swagger-service.app
(:require [swagger-service.core :as core]

[figwheel.client :as figwheel :include-macros true]))

(enable-console-print!)

(figwheel/watch-and-reload
:websocket-url "ws://localhost:3449/figwheel-ws"
:on-jsload core/mount-components)

(core/init!)

• Click HERE to purchase this book now. discuss

Creating the API • 15

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/env/dev/cljs/swagger_service/dev.cljs
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

It enables console printing, creates a Figwheel WebSocket, and connects the
Weasel REPL library to the Clojure nREPL started by the server.8 Finally, the
swagger-service.core/init! function is called. The “prod” entry point disables the
console printing functionality and then calls the core/init! function to bootstrap
the application.

swagger-service/env/prod/cljs/swagger_service/prod.cljs

(ns swagger-service.app
(:require [swagger-service.core :as core]))

;;ignore println statements in prod
(set! *print-fn* (fn [& _]))

(core/init!)

Since the source path is selected based on the profile, no application-specific
code needs to be aware of the environment. This approach avoids the need
to manually track what parts of the application need to be loaded for develop-
ment and deployment.

8. https://github.com/tomjakubowski/weasel

Chapter 6. Writing RESTful Web Services • 16

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/env/prod/cljs/swagger_service/prod.cljs
https://github.com/tomjakubowski/weasel
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

Using Figwheel

With Figwheel running, any changes we make in our ClojureScript sources
should be automatically updated in the page. Let’s replace the existing code
from the namespace with the following code:

(ns swagger-service.core
(:require [reagent.core :as reagent :refer [atom]]

[ajax.core :refer [GET]])
(:require-macros [secretary.core :refer [defroute]]))

(defn home-page []
[:div
[:h1 "TODO: show some cats..."]])

(defn mount-components []
(reagent/render-component [home-page] (.getElementById js/document "app")))

(defn init! []
(mount-components))

When we check the browser, it should now display the new content without
our having to refresh the page. The Figwheel compiler is able to reflect most
changes seamlessly. However, we still have to reload the page for certain
changes to take effect. For example, when we remove a mounted element
such as the navbar, we need to refresh the page for that to take effect.

We’re now ready to think about what our UI should look like. We’re planning
on querying the server for a list of links. We then partition these into groups
and show them on the page. Next we need to create an atom to hold the
results. Let’s create one in our home-page component and populate it with some
sample links from our API test page and display them using the img tag.

(defn home-page []
(let [links

(atom
["http://25.media.tumblr.com/Jjkybd3nSafemf3rYocB7QcC_500.jpg"
"http://25.media.tumblr.com/tumblr_ln4zdhp4Uj1qcnzavo1_500.gif"
"http://24.media.tumblr.com/tumblr_m2kmg2VK2a1qhwmnpo1_1280.jpg"
"http://24.media.tumblr.com/tumblr_m30w1mNl1w1qgjltdo1_1280.jpg"
"http://25.media.tumblr.com/tumblr_m3gm5oqm9e1r73wdao1_500.jpg"])]

(fn []
[:div
(for [link @links]

[:img {:src link}])])))

As you may recall, we create a local state using the let binding and return a
function that is called on each subsequent update of this component.

Next, we add a fetch-links! function that grabs the list of images from the server.
This function accepts an atom along with the number of links to fetch as its

• Click HERE to purchase this book now. discuss

Creating the API • 17

http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

parameters and resets the atom with the links from the server. We can now
update our home-page component to fetch the links when it’s first called. Then
we can see all the links start appearing on the page.

(defn fetch-links! [links link-count]
(GET "/api/cat-links"

{:params {:link-count link-count}
:handler #(reset! links %)}))

(defn home-page []
(let [links

(atom nil)]
(fetch-links! links 20)
(fn []
[:div
(for [link @links]

[:img {:src link}])])))

As you can see, that’s a lot of links to load all at once. A better user experience
would be to partition these into groups and allow the user to navigate these.
First, change the fetch-links! function to partition the links into groups of six.

swagger-service/src/cljs/swagger_service/core.cljs

(defn fetch-links! [links link-count]
(GET "/api/cat-links"

{:params {:link-count link-count}
:handler #(reset! links (vec (partition-all 6 %)))}))

Now write a component that renders a group of links as two rows of images:

swagger-service/src/cljs/swagger_service/core.cljs

(defn images [links]
[:div.text-xs-center
(for [row (partition-all 3 links)]

^{:key row}
[:div.row
(for [link row]

^{:key link}
[:div.col-sm-4 [:img {:width 400 :src link}]])])])

Let’s update the home-page function to track the partition and display it using
the component we just wrote:

(defn home-page []
(let [links (atom nil)

page (atom 0)]
(fetch-links! links 20)
(fn []
[:div
(when @links

Chapter 6. Writing RESTful Web Services • 18

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

[images (@links @page)])])))

All that’s left is to create a pager component to allow us to navigate the parti-
tions. The pager creates buttons based on the count of partitions and hooks
up the logic to navigate back and forth within them. Any time the value of
the page atom is changed, it causes the home-page component to be repainted
to show the selected partition.

swagger-service/src/cljs/swagger_service/core.cljs

(defn forward [i pages]
(if (< i (dec pages)) (inc i) i))

(defn back [i]
(if (pos? i) (dec i) i))

(defn nav-link [page i]
[:li.page-item>a.page-link.btn.btn-primary
{:on-click #(reset! page i)
:class (when (= i @page) "active")}

[:span i]])

(defn pager [pages page]
(when (> pages 1)

(into
[:div.text-xs-center>ul.pagination.pagination-lg]
(concat

[[:li.page-item>a.page-link.btn
{:on-click #(swap! page back pages)
:class (when (= @page 0) "disabled")}

[:span "«"]]]
(map (partial nav-link page) (range pages))
[[:li.page-item>a.page-link.btn

{:on-click #(swap! page forward pages)
:class (when (= @page (dec pages)) "disabled")}

[:span "»"]]]))))

Note that the pager function uses unicode characters for the forward and backward
arrows. Alternatively, we could use HTML codes, as follows:

(ns swagger-service.core
(:require ...

[goog.string :as gs]))

...

(defn pager [pages page]
(when (> pages 1)

(into
[:div.text-xs-center>ul.pagination.pagination-lg]
(concat

[[:li.page-item>a.page-link.btn
{:on-click #(swap! page back pages)

• Click HERE to purchase this book now. discuss

Creating the API • 19

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

:class (when (= @page 0) "disabled")}
[:span (gs/unescapeEntities "«")]]]

(map (partial nav-link page) (range pages))
[[:li.page-item>a.page-link.btn

{:on-click #(swap! page forward pages)
:class (when (= @page (dec pages)) "disabled")}

[:span (gs/unescapeEntities "»")]]]))))

Finally, let’s update the home-page component to add the pager:

swagger-service/src/cljs/swagger_service/core.cljs

(defn home-page []
(let [page (atom 0)

links (atom nil)]
(fetch-links! links 50)
(fn []
(if (not-empty @links)

[:div.container>div.row>div.col-md-12
[pager (count @links) page]
[images (@links @page)]]

[:div "Standby for cats!"]))))

That’s all there is to it. We’re now fetching data from the server, partitioning
it into groups, and providing a way to navigate these partitions, all in under
a hundred lines of code.

What You’ve Learned
We now have a way to organize our service end points in a structured way,
and we have a much better development story when it comes to ClojureScript
compilation. In the next chapter we’ll take a deeper look at connecting to and
working with databases.

Chapter 6. Writing RESTful Web Services • 20

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj2/code/swagger-service/src/cljs/swagger_service/core.cljs
http://pragprog.com/titles/dswdcloj2
http://forums.pragprog.com/forums/dswdcloj2

