
Extracted from:

Web Development with Clojure,
Third Edition

Build Large, Maintainable Web Applications Interactively

This PDF file contains pages extracted from Web Development with Clojure, Third
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Web Development with Clojure,
Third Edition

Build Large, Maintainable Web Applications Interactively

Dmitri Sotnikov
Scot Brown

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-682-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Defining HTTP Routes
We’ve now confirmed that we’re able to store and retrieve the messages from
the database, and we’ve written tests to make sure we don’t have any
regressions. Next, we’ll need to write a user interface that calls these functions.
We’ll create HTTP endpoints and have these call the function that corresponds
to the user’s intended action. The endpoints are commonly referred to as
routes, and the route that renders the home page for our application is found
in the guestbook.routes.home namespace.

guestbook-base/src/clj/guestbook/routes/home.clj
(ns guestbook.routes.home

(:require
[guestbook.layout :as layout]
[guestbook.db.core :as db]
[clojure.java.io :as io]
[guestbook.middleware :as middleware]
[ring.util.response]
[ring.util.http-response :as response]))

(defn home-page [request]
(layout/render request "home.html" {:docs (-> "docs/docs.md"

io/resource
slurp)}))

(defn about-page [request]
(layout/render request "about.html"))

(defn home-routes []
[""
{:middleware [middleware/wrap-csrf

middleware/wrap-formats]}
["/" {:get home-page}]
["/about" {:get about-page}]])

You can see that the / route calls the home-page function that in turn renders
the home.html template. You can also see that we’re passing a map of parameters
to the render function; currently the only parameter being passed is the :docs
key. These parameters indicate dynamic content that is injected into our
template before it’s sent to the client. Let’s take a quick look at the contents
of the resources/html/home.html file:

guestbook-base/resources/html/home.html
{% extends "base.html" %}
{% block content %}

<div class="content">
{{docs|markdown}}
</div>

{% endblock %}

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj3/code/guestbook-base/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook-base/resources/html/home.html
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

You can see that this file extends a template called base.html and renders a
block called content. The parent template provides a common layout for the
pages in our application, and each individual page can render the portion of
the page relevant to it. If you’re familiar with Rails or Django templates, then
this syntax should look very familiar. You’ll also note that the templates are
set up to use Bulma CSS13 as the default scaffolding for the page layout.

The templates use a context map to populate the dynamic content. The keys
in the map are used as template variables. For example, the {{docs|markdown}}
statement corresponds to the :docs key in the map that was passed to the lay-
out/render function by the home-page function.

Let’s update our resources/html/home.html template to display our messages.

First, let’s replace {{docs|markdown}} with a wrapper that will center and format
our page nicely:

guestbook/resources/html/home.html
{% block content %}
<div class="content">

<div class="columns is-centered">
<div class="column is-two-thirds">

<!-- Content -->
</div>

</div>
</div>
{% endblock %}

Then let’s add some HTML inside our wrapper that displays a list of existing
messages. Just like with docs, our messages are supplied using a variable
called messages. Each item in messages is a map containing keys called timestamp,
message, and name. We iterate over the messages and create an li tag for each
message inside a ul tag, like so:

guestbook/resources/html/home.html
<div class="columns">

<div class="column">
<h3>Messages</h3>
<ul class="messages">

{% for item in messages %}

<time>
{{item.timestamp|date:"yyyy-MM-dd HH:mm"}}

</time>
<p>{{item.message}}</p>
<p> - {{item.name}}</p>

13. https://bulma.io/documentation/

• 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj3/code/guestbook/resources/html/home.html
http://media.pragprog.com/titles/dswdcloj3/code/guestbook/resources/html/home.html
https://bulma.io/documentation/
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

{% endfor %}

</div>

</div>

Okay, let’s go back to the guestbook.routes.home namespace and add the code to
render the existing messages. Note we already have a reference to the guest-
book.db.core namespace in the ns declaration at the top of the home namespace.

We can now update the home-page function to associate the messages with the
:messages key when rendering the template.

guestbook/src/clj/guestbook/routes/home.clj
(defn home-page [request]

(layout/render
request "home.html" {:messages (db/get-messages)}))

Since we’ve already populated a message in our database during earlier testing,
we should see it when we reload the page. We can now take a look at adding
a form to create new messages from the page.

Now we need to create another div that contains a form for submitting new
messages. Note that we need to provide a {% csrf-field%} in our form.14 Luminus
enables anti-forgery protection by default, and any POST requests that don’t
contain the anti-forgery token are rejected by the server.

guestbook/resources/html/home.html
<div class="columns">

<div class="column">
<form method="POST" action="/message">

{% csrf-field %}
<div class="field">

<label class="label" for="name">
Name

</label>
<input class="input"

type="text"
name="name"
value="{{name}}" />

</div>

<div class="field">
<label class="label" for="message">

Message
</label>
<textarea

14. http://en.wikipedia.org/wiki/Cross-site_request_forgery

• Click HERE to purchase this book now. discuss

• 3

http://media.pragprog.com/titles/dswdcloj3/code/guestbook/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook/resources/html/home.html
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

class="textarea"
name="message">{{message}}</textarea>

</div>

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

<input type="submit"
class="button is-primary"
value="comment" />

</form>
</div>

</div>

Our final template should look as follows:

guestbook/resources/html/home.html
{% extends "base.html" %}
{% block content %}
<div class="content">

<div class="columns is-centered">
<div class="column is-two-thirds">

<!-- Content -->
<div class="columns">

<div class="column">
<h3>Messages</h3>
<ul class="messages">

{% for item in messages %}

<time>
{{item.timestamp|date:"yyyy-MM-dd HH:mm"}}

</time>
<p>{{item.message}}</p>
<p> - {{item.name}}</p>

{% endfor %}

</div>

</div>
<div class="columns">

<div class="column">
<form method="POST" action="/message">

{% csrf-field %}
<div class="field">

<label class="label" for="name">
Name

</label>
<input class="input"

type="text"
name="name"
value="{{name}}" />

</div>

<div class="field">
<label class="label" for="message">

Message
</label>

• Click HERE to purchase this book now. discuss

• 5

http://media.pragprog.com/titles/dswdcloj3/code/guestbook/resources/html/home.html
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

<textarea
class="textarea"
name="message">{{message}}</textarea>

</div>
<input type="submit"

class="button is-primary"
value="comment" />

</form>
</div>

</div>
</div>

</div>
</div>
{% endblock %}

We now need to create a new route on the server, called /message, to respond
to the HTTP POST method. The route should call the function save-message! with
the request to create a new message.

guestbook/src/clj/guestbook/routes/home.clj
["/message" {:post save-message!}]

The route handler calls the save-message! function that follows. This function
grabs the params key from the request. This key contains a map of parameters
that were sent by the client when the form was submitted to the server.

guestbook/src/clj/guestbook/routes/home.clj
(defn save-message! [{:keys [params]}]
(db/save-message! params)
(response/found "/"))

Since we named our fields name and message, they match the fields we
defined in our table: to create a new record all we have to do is call the save-
message! function from the db namespace with the params map. Once the mes-
sage is saved, we redirect back to the home page. The final code in the
namespace should look as follows:

guestbook/src/clj/guestbook/routes/home.clj
(ns guestbook.routes.home

(:require
[guestbook.layout :as layout]
[guestbook.db.core :as db]
[clojure.java.io :as io]
[guestbook.middleware :as middleware]
[ring.util.response]
[ring.util.http-response :as response]))

(defn home-page [request]
(layout/render
request "home.html" {:messages (db/get-messages)}))

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj3/code/guestbook/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

(defn save-message! [{:keys [params]}]
(db/save-message! params)
(response/found "/"))

(defn about-page [request]
(layout/render
request "about.html"))

(defn home-routes []
[""
{:middleware [middleware/wrap-csrf

middleware/wrap-formats]}
["/" {:get home-page}]
["/message" {:post save-message!}]
["/about" {:get about-page}]])

At this point our guestbook should display existing messages as well as allow
the users to post new messages. As a last touch, we’ll add some CSS to style
our app. Static assets such as CSS, images, and JavaScript are found in the
resources/public folder and are served without the need to define routes for them.
Let’s add the following CSS in the resources/public/css/screen.css file:

guestbook/resources/public/css/screen.css
ul.messages {

list-style: none;
}

ul.messages li {
padding: 0.5em;
border-bottom: 1px dotted #ccc;

}

ul.messages li:last-child {
border-bottom: none;

}

li time {
font-size: 0.75em;

color: rgba(0, 0, 0, 0.5);
}

The guestbook page should now look like the figure on page 8.

Validating Input
What else should we do? Currently, our guestbook doesn’t do any validation
of user input. That’s weak. Let’s see how we can ensure that user messages
contain the necessary information before trying to store them in the database.

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/dswdcloj3/code/guestbook/resources/public/css/screen.css
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

Luminus defaults to using the Struct library15 to handle input validation. The
library provides a straightforward way to check that our parameter map
contains the required values.

Struct uses struct.core/validate function for handling validation. This function
accepts a map containing the parameters followed by the validation schema.
The schema is used to validate the input and return error messages for any
invalid fields.

Many common validators such as required, email, matches, and so on are provided
by Struct out of the box. These validators can be used individually or chained
together to validate different aspects of the input value. Also, we can easily
create custom validators for situations where the default ones won’t do.

Before we see how validation works, we want to include struct.core in our
guestbook.routes.home namespace.

(ns guestbook.routes.home
(:require
...
[struct.core :as st]))

We can now use the st/validate function to check that the input values are valid
and to produce an error message when they’re not. In our case, we need to
ensure both that the username is not empty and that the message has at
least ten characters before we persist them to the database. Our validation
schema looks as follows:

15. http://funcool.github.io/struct/latest

• 8

• Click HERE to purchase this book now. discuss

http://funcool.github.io/struct/latest
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

guestbook-validation/src/clj/guestbook/routes/home.clj
(def message-schema

[[:name
st/required
st/string]

[:message
st/required
st/string
{:message "message must contain at least 10 characters"
:validate (fn [msg] (>= (count msg) 10))}]])

The validation schema specifies that both the :name and the :message keys are
required, that they’re strings, and that the message must be more than 9
characters in length. The validation function then calls the st/validate function,
passing it the params along with the schema to validate the message.

guestbook-validation/src/clj/guestbook/routes/home.clj
(defn validate-message [params]

(first (st/validate params message-schema)))

The result of the validate function is a vector where the first element is either
nil when the validation passes or a map of errors. The keys in the map are the
parameters that failed validation and the values are the error messages.

The next step is to hook up the validation function into our workflow. Cur-
rently, the save-message! function attempts to store the message and then
redirects back to the home page. We need to add the ability to pass back the
error message along with the original parameters when validation fails.

A common approach for this is to use a flash session to track the errors. Flash
sessions have a lifespan of a single request, making them ideal storage for
this purpose. The save-message! function validates the input and checks for
errors. If it finds errors, it associates a :flash key with the response that contains
the parameters along with the errors. If no errors are generated, it saves the
message to the database and redirects as it did before.

guestbook-validation/src/clj/guestbook/routes/home.clj
(defn save-message! [{:keys [params]}]

(if-let [errors (validate-message params)]
(-> (response/found "/")

(assoc :flash (assoc params :errors errors)))
(do
(db/save-message! params)
(response/found "/"))))

We can now update the home-page function to check for the :flash key. Let’s
select the name, message, and errors keys from the flash session and merge them
with our parameter map.

• Click HERE to purchase this book now. discuss

• 9

http://media.pragprog.com/titles/dswdcloj3/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

guestbook-validation/src/clj/guestbook/routes/home.clj
(defn home-page [{:keys [flash] :as request}]

(layout/render
request
"home.html"
(merge {:messages (db/get-messages)}

(select-keys flash [:name :message :errors]))))

Finally, let’s update our page to render the errors when they’re present (also
see figure on page 11).

guestbook-validation/resources/html/home.html
<div class="columns">

<div class="column">
<form method="POST" action="/message">

{% csrf-field %}
<div class="field">

<label class="label" for="name">
Name

</label>
{% if errors.name %}
<div class="notification is-danger">

{{errors.name|join}}
</div>
{% endif %}
<input class="input"

type="text"
name="name"
value="{{name}}" />

</div>

<div class="field">
<label class="label" for="message">

Message
</label>
{% if errors.message %}
<div class="notification is-danger">

{{errors.message|join}}
</div>
{% endif %}
<textarea

class="textarea"
name="message">{{message}}</textarea>

</div>
<input type="submit"

class="button is-primary"
value="comment" />

</form>
</div>

</div>

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/dswdcloj3/code/guestbook-validation/src/clj/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj3/code/guestbook-validation/resources/html/home.html
http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

Running Standalone
Up to now, we’ve been running our app using the lein run command. This starts
an embedded server in development mode so that it watches files for changes
and reloads them as needed. To package our application for deployment, we
can package it into a runnable JAR as follows:

$ lein uberjar

The archive will be created in the target folder of our application, and we can
run it using the java command.

Since we’re using a database, we also have to make sure that the connection
is specified as an environment variable. When we ran our application in
development mode, the connection variable was provided in the dev-config.edn
file. However, now that the application has been packaged for production,
this variable is no longer available. Let’s create a connection variable and
then run our application as follows:

$ export DATABASE_URL="jdbc:h2:./guestbook_dev.db"
$ java -jar target/uberjar/guestbook.jar

What You’ve Learned
Okay, that’s the whirlwind tour. By this point you should be getting a feel for
developing web applications with Clojure, and you should be comfortable
with some of the Clojure basics. You saw how to use Leiningen to create and

• Click HERE to purchase this book now. discuss

What You’ve Learned • 11

http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

manage applications. You learned about HTTP routing and some basic HTML
templating. While we didn’t explore many aspects of the skeleton application
that was generated for us, you saw how the basic request life cycle is handled.

We’ll be diving deeper and writing more code in upcoming chapters. If you
aren’t already, you should start using one of the popular Clojure-aware editor
plugins, such as Cursive (IntelliJ), Calva (VSCode), Cider (Emacs), Fireplace
(Vim), or Counterclockwise (Eclipse). We can’t overstate the value of these
tools, and we strongly recommend taking the time to set one up. See Appendix
2, Editor Configuration, on page ?, for guides on setting up a few popular
Clojure editors.

In the next chapter, we’ll delve into the details of the Clojure web stack to
understand some of the details of how our application works.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/dswdcloj3
http://forums.pragprog.com/forums/dswdcloj3

