
Extracted from:

Hello, Android
Introducing Google’s Mobile Development Platform,

Fourth Edition

This PDF file contains pages extracted from Hello, Android, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Hello, Android
Introducing Google’s Mobile Development Platform,

Fourth Edition

Ed Burnette

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-037-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2015

https://pragprog.com
rights@pragprog.com

Now that you have an idea of what Android is, let’s take a look at how it works.
Some parts of Android may be familiar, such as the Linux kernel and the SQL
database. Others will be completely foreign, such as Android’s idea of the
application life cycle.

You’ll need a good understanding of these key concepts in order to write well-
behaved Android applications, so if you read only one chapter in this book,
read this one.

The Big Picture
Let’s start by taking a look at the overall system architecture—the key layers
and components that make up the Android open source software stack. In
the figure on page 6, you can see the “20,000-foot” view of Android. Study
it closely—there will be a test tomorrow.

Each layer uses the services provided by the layers below it. Starting from
the bottom, the following sections highlight the layers provided by Android.

Linux Kernel
Android is built on top of a solid and proven foundation: the Linux kernel.
Created by Linus Torvalds in 1991, Linux can be found today in everything
from wristwatches to supercomputers. Linux provides the hardware
abstraction layer for Android, allowing Android to be ported to a wide variety
of platforms in the future.

Internally, Android uses Linux for its memory management, process manage-
ment, networking, and other operating system services. The Android user will
never see Linux, and your programs will not usually make Linux calls
directly. As a developer, though, you’ll need to be aware it’s there.

Some utilities you need during development interact with Linux. For example,
the adb shell command1 will open a Linux shell in which you can enter other
commands to run on the device. From there you can examine the Linux file
system, view active processes, and so forth, subject to security restrictions.

Native Libraries
The next layer above the kernel contains the Android native libraries. These
shared libraries are all written in C or C++, compiled for the particular hard-
ware architecture used by the Android device, and preinstalled by the vendor.

1. http://d.android.com/tools/help/adb.html

• Click HERE to purchase this book now. discuss

http://d.android.com/tools/help/adb.html
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

Linux Kernel

Libraries Android Runtime

Applications and Services

Application Framework

Home Camera Browser Google Play
Services Your App Here

Activity Manager Window
Manager

Content
Providers View System Notification

Manager

Package
Manager

Telephony
Manager Resource Location

Manager
Sensor Manager

Core Libraries

Dalvik/ART
Virtual MachineFreeTypeOpenGL | ES Chromium

SSLSGL libc

Media
FrameworkSurface Manager SQLite

Bluetooth Driver Camera Driver Binder (IPC)
Driver

USB Driver WiFi Driver Audio Drivers Power
Management

Flash Memory
DriverDisplay Driver

Keypad Driver

Figure 1—Android system architecture

Some of the most important native libraries include the following:

• Surface Manager: Instead of drawing directly to the screen, your drawing
commands are saved into lists that are then combined with lists from
other windows and are then composited to form the display the user sees.
This lets the system create all sorts of interesting effects, such as see-
through windows and fancy transitions.

• 2D and 3D graphics: Two- and three-dimensional elements can be com-
bined in a single user interface with Android. Everything is converted into
3D drawing lists and rendered by hardware for the fastest possible expe-
rience.

• Media codecs: Android can play video and record and play back audio in
various formats, including AAC, AVC (H.264), H.263, MP3, and MPEG-4.

• SQL database: Android includes the lightweight SQLite database engine,2

the same database used in Firefox and the Apple iPhone. You can use
this for persistent storage in your application.

2. http://www.sqlite.org

• 6

• Click HERE to purchase this book now. discuss

http://www.sqlite.org
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

• Browser engine: For the fast display of HTML content, Android uses the
Chromium library.3 This is the same engine used in the Google Chrome
browser, and it’s a close cousin of the one used in Apple’s Safari browser
and the Apple iPhone.

These libraries aren’t applications that stand by themselves. They exist only
to be called by higher-level programs. You can write and deploy your own
native libraries using the Native Development Toolkit (NDK). Native develop-
ment is beyond the scope of this book, but if you’re interested, you can read
all about it online.4

Android Runtime
Also sitting on top of the kernel is the Android runtime, including the runtime
environment and the core Java libraries. Depending on the version of Android,
the environment uses either Dalvik or ART.

Dalvik is a virtual machine (VM) designed and written by Dan Bornstein at
Google. Your code gets compiled into machine-independent instructions called
bytecodes, which are then executed by the Dalvik VM on the mobile device.

ART (Android Runtime) is an ahead-of-time compiler that replaced Dalvik in
Android 5.0 (Lollipop). When an application is installed onto your Android
device, ART compiles it into machine code. Compared to Dalvik, this makes
programs run faster at the expense of a longer install time.

Dalvik and ART are Google’s semi-compatible implementation of Java, opti-
mized for mobile devices. All the code you write for Android will be written in
Java and run by Dalvik or ART.

Note that the core Java libraries that come with Android are different from
both the Java Standard Edition (Java SE) libraries and the Java Mobile Edition
(Java ME) libraries. A substantial amount of overlap exists, however. In
Appendix 1, Java vs. the Android Language and APIs, on page ?, you’ll find
a comparison of Android and standard Java libraries.

Application Framework
Sitting above the native libraries and runtime, you’ll find the Application
Framework layer. This layer provides the high-level building blocks you’ll use
to create your applications. The framework comes preinstalled with Android,
but you can also extend it with your own components as needed.

3. http://www.chromium.org
4. http://d.android.com/tools/sdk/ndk

• Click HERE to purchase this book now. discuss

The Big Picture • 7

http://www.chromium.org
http://d.android.com/tools/sdk/ndk
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

Embrace and Extend

One of the unique and powerful qualities of Android is that all applications have a
level playing field. What I mean is that the system applications have to go through
the same public API that you use. You can even tell Android to make your application
replace the standard applications if you want.

The most important parts of the framework are as follows:

• Activity manager: This controls the life cycle of applications (see It's Alive!,
on page 12) and maintains a common “backstack” for user navigation.

• Content providers: These objects encapsulate data that needs to be shared
between applications, such as contacts. See Content Providers, on page
11.

• Resource manager: Resources are anything that goes with your program
that is not code. See Using Resources, on page 11.

• Location manager: An Android device always knows where it is. See
Chapter 12, Using Google Play Services, on page ?.

• Notification manager: Events such as arriving messages, appointments,
proximity alerts, alien invasions, and more can be presented in an unob-
trusive fashion to the user.

Applications and Services
The highest layer in the Android architecture diagram is the Applications and
Services layer. Think of this as the tip of the Android iceberg. End users will
see only the applications, blissfully unaware of all the action going on below
the waterline. As the developer, however, you know better.

Applications are programs that can take over the whole screen and interact
with the user. On the other hand, services operate invisibly to extend the
application framework. The majority of this book will cover application
development, because that’s what most of you will be writing.

When someone buys an Android phone or tablet, it will come prepackaged
with a number of standard system applications, including the following:

• Phone dialer
• Email
• Camera
• Web browser

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

• Google Play Store

Using the Play Store, users will be able to download new programs to run on
their phone. That’s where you come in. By the time you finish this book, you’ll
be able to write your own awesome applications for Android.

The Android framework provides a number of building blocks that you use
to create your applications. Let’s take a look at those next.

Building Blocks
A few objects are defined in the Android SDK that every developer needs to
be familiar with. The most important ones are activities, fragments, views,
intents, services, and content providers. You’ll see examples of most of these
in the rest of the book, so I’d like to briefly introduce them now.

Activities
An activity is a user interface screen. Applications can define one or more
activities to handle different phases of the program. As discussed in It's Alive!,
on page 12, each activity is responsible for saving its own state so that it can
be restored later as part of the application life cycle. See Creating the Main
Screen, on page ? for an example. Activities extend the Context class, so you
can use them to get global information about your application.

Fragments
A fragment is a component of an activity. Usually they’re displayed on the
screen, but they don’t have to be. Fragments were introduced in Android 3.0
(Honeycomb), but if you need to target older versions of Android you can use
a compatibility library.

If you consider an email program, there’s one part of the app that displays
the list of all the mail you have, and another part that displays the text of
one email. These could be (and probably are) implemented as two different
fragments. Using fragments allows you to more easily adapt to different-sized
screens (see the following diagram).

• Click HERE to purchase this book now. discuss

Building Blocks • 9

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

Tablet

Selecting an item
updates Fragment B

Activity A contains
Fragment A and Fragment B

Selecting an item
starts Activity B

Phone

Activity A contains
Fragment A

Activity B contains
Fragment B

Views
A view is the smallest level of the user interface. Views are contained directly
by activities or by fragments inside activities. They can be created by Java
code, or preferably, by XML layouts. Each view has a series of attributes, or
properties, that control what it does, how it acts, and what it displays.

Intents
An intent is a mechanism for describing a specific action, such as “pick a
photo,” “phone home,” or “open the pod bay doors.” In Android, just about
everything goes through intents, so you have plenty of opportunities to replace
or reuse components. See Browsing by Intent, on page ? for an example of
an intent.

For example, there’s an intent for “send an email.” If your application needs
to send mail, you can invoke that intent. Or if you’re writing a new email
application, you can register an activity to handle that intent and replace the
standard mail program. The next time somebody tries to send an email, that
person will get the option to use your program instead of the standard one.

Services
A service is a task that runs in the background without the user’s direct
interaction, similar to a Unix daemon. For example, consider a music player.
The music may be started by an activity, but you want it to keep playing even

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

when the user has moved on to a different program. So, the code that does
the actual playing should be in a service. Later, another activity may bind to
that service and tell it to switch tracks or stop playing.

Android comes with many services built in, along with convenient APIs to
access them. Google also provides optional services for extra functionality
(see Chapter 12, Using Google Play Services, on page ?).

Content Providers
A content provider is a set of data wrapped up in a custom API to read and
write it. This is the best way to share global data between applications. For
example, Google provides a content provider for contacts. All the information
there—names, addresses, phone numbers, and so forth—can be shared by
any application that wants to use it. See Using a ContentProvider, on page ?
for an example.

Using Resources
A resource is a localized text string, bitmap, or other small piece of noncode
information that your program needs. At build time all your resources get
compiled into your application. This is useful for internationalization and for
supporting multiple device types (see Specifying Alternate Resources, on page
?).

You’ll create and store your resources in the res directory inside your project.
The Android resource compiler (aapt)5 processes resources according to which
subfolder they’re in and the format of the file. For example, PNG and JPG
format bitmaps should go in a directory starting with res/drawable, and XML
files that describe screen layouts should go in a directory starting with
res/layout. You can add suffixes for particular languages, screen orientations,
pixel densities, and more (see All Screens Great and Small, on page ?).

The resource compiler compresses and packs your resources and then gener-
ates a class named R that contains identifiers you use to reference those
resources in your program. This is a little different from standard Java
resources, which are referenced by key strings. Doing it this way allows
Android to make sure all your references are valid and saves space by not
having to store all those resource keys. We’ll see an example of the code to
access a resource in Chapter 3, Opening Moves, on page ?.

5. http://d.android.com/tools/building

• Click HERE to purchase this book now. discuss

Building Blocks • 11

http://d.android.com/tools/building
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

Now let’s take a closer look at the life cycle of an Android application. It’s a
little different from what you’re used to seeing.

It’s Alive!
On your standard Linux or Windows
desktop, you can have many applications
running and visible at once in different
windows. One of the windows has key-
board focus, but otherwise all the pro-
grams are equal. You can easily switch
between them, but it’s your responsibility
as the user to move the windows around
so you can see what you’re doing and
close programs you don’t need.

Android doesn’t work that way.

In Android, there’s one foreground appli-
cation, which typically takes over the
whole display except for the status line.
When users turn on their phone or tablet,
the first application they see is the Home
application (see the figure).

When the user runs an application,
Android starts it and brings it to the fore-
ground. From that application, the user might invoke another application, or
another screen in the same application, and then another and another. All
these programs and screens are recorded on the application stack by the
system’s Activity Manager. At any time, users can press the Back button to
return to the previous screen on the stack. From the users’ point of view, it
works a lot like the history in a web browser. Pressing Back returns them to
the previous page.

Process != Application
Internally, each user interface screen is represented by an Activity class (see
Activities, on page 9). Each activity has its own life cycle. An application is
one or more activities plus a Linux process to contain them. That sounds
pretty straightforward, doesn’t it? But don’t get comfortable yet; I’m about to
throw you a curve ball.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

In Android, an application can be “alive” even if its process has been killed.
Put another way, the activity life cycle isn’t tied to the process life cycle. Pro-
cesses are just disposable containers for activities.

Life Cycles of the Rich and Famous
During its lifetime, each activity of an Android program can be in one of sev-
eral states, as shown in the following figure. You, the developer, don’t have
control over what state your program is in. That’s all managed by the system.
However, you do get notified when the state is about to change through the
onXX () method calls.

(1)*onCreate()

(2)*onStart()

(2)*onStart()

(4)*onResume()

(2)*onPause()

(2)*onStop()

onDestroy()
or

<Process*killed>

(3)*onRestoreInstanceState()*

<Process*killed>

onResume()(1)*onRestart()

(3)*onResume() (1)*onSaveInstanceState()*

(1)*onSaveInstanceState()*

**(optional)

Starting

Paused

Destroyed

Stopped

Running

You override these methods in your Activity class, and Android will call them
at the appropriate time:

• Click HERE to purchase this book now. discuss

It’s Alive! • 13

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

• onCreate(Bundle): This is called when the activity first starts up. You can use
it to perform one-time initialization such as creating the user interface.
onCreate() takes one parameter that is either null or some state information
previously saved by the onSaveInstanceState() method.

• onStart(): This indicates the activity is about to be displayed to the user.

• onResume(): This is called when your activity can start interacting with the
user. This is a good place to start animations and music.

• onPause(): This runs when the activity is about to go into the background,
usually because another activity has been launched in front of it. This is
where you should save your program’s persistent state, such as a database
record being edited.

• onStop(): This is called when your activity is no longer visible to the user
and it won’t be needed for a while. If memory is tight, onStop() may never
be called (the system may simply terminate your process).

• onRestart(): If this method is called, it indicates your activity is being
redisplayed to the user from a stopped state.

• onDestroy(): This is called right before your activity is destroyed. If memory
is tight, onDestroy() may never be called (the system may simply terminate
your process).

• onSaveInstanceState(Bundle): Android will call this method to allow the activity
to save per-instance state, such as a cursor position within a text field.
Usually you won’t need to override it because the default implementation
saves the state for all your user interface controls automatically.

• onRestoreInstanceState(Bundle): This is called when the activity is being reini-
tialized from a state previously saved by the onSaveInstanceState() method.
The default implementation restores the state of your user interface.

Activities that aren’t running in the foreground may be stopped, or the Linux
process that houses them may be killed at any time in order to make room
for new activities. This will be a common occurrence, so it’s important that
your application be designed from the beginning with this in mind. In some
cases, the onPause() method may be the last method called in your activity, so
that’s where you should save any data you want to keep around for next time.

Starting with Android 3.0 (Honeycomb), Google introduced another twist in
the story of application life cycles: fragments.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

Better Living Through Fragments
Fragments represent a component of your application. They’re contained
within activities (see Fragments, on page 9). and have a life cycle very similar
to activities. In fact, many of the life-cycle methods for fragments are called
by the methods of the Activity (for example, Fragment.onResume() is called indirectly
by Activity.onResume()). See the following diagram for details:

(1)5onInflate()

(2)5onAttach()

(1)5onCreateView()

(3)5onCreate()

*5(tied5to5Activity)

Active

Starting

Created

Destroyed

Inactive

(2)5onActivityCreated()

(3)5onViewStateRestored()

(5)5onResume()*

(4)5onStart()*
(1)5onPause()*

(2)5onStop()*

(2)5onDetach()

(1)5onDestroy()

(3)5onSaveInstanceState()*

(4)5onDestroyView()

Fragments can outlive the activities that contain them. For example, if you
rotate the screen while an app is running, the activity will usually be destroyed
and re-created so that it can adjust to the new screen dimensions. However,
the fragments will usually keep on going. This lets you keep heavyweight
objects such as a network connection alive during the transition.

• Click HERE to purchase this book now. discuss

It’s Alive! • 15

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

