
Extracted from:

Hello, Android
Introducing Google’s Mobile Development Platform,

Fourth Edition

This PDF file contains pages extracted from Hello, Android, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Hello, Android
Introducing Google’s Mobile Development Platform,

Fourth Edition

Ed Burnette

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-037-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2015

https://pragprog.com
rights@pragprog.com

In recent years, more and more functionality has moved into the cloud.
Amazon Web Services is a multibillion-dollar business offering cloud-based
computing power and storage. Google Apps handle back-office functionality
for millions of small and medium-sized businesses. Microsoft is even in the
process of turning its ubiquitous Office suite into a cloud service. One thing
all these platforms have in common are REST-ful web service interfaces.

REST (REpresentational State Transfer) means many things to different people,
but the most pragmatic definition is a technique of building a service on the
Internet that you can cause to do something by making simple HTTP
(HyperText Transfer Protocol) requests over TCP/IP (Transmission Control
Protocol/Internet Protocol) connections. In the most basic terms, there’s a
server running out there on the web somewhere, which you can connect to
over a standard communications port, using a standard protocol, and you
can send it requests and commands and get results back.

Web servers such as google.com and microsoft.com that you use every day
are a kind of web service. The client (browser) opens a connection on port 80
or 443, sends it a request for a web page or other asset, receives the result,
and then closes the connection. On this simple architecture, the entire World
Wide Web is built.

In this chapter you’ll learn how to make network connections to services on
the web from your Android program. This will open up a new world of func-
tionality to your app.

Using Web Services
Android provides a full set of Java-standard networking APIs, such as the
java.net.HttpURLConnection package, that you can use in your programs. The tricky
part is to make the calls asynchronously so that your program’s user interface
is responsive at all times.

Consider what would happen if you just make a blocking network call in the
middle of your user interface code. Suddenly your application would not be
able to respond to any events such as touches or button presses. It would
appear hung to the user. Obviously, that’s something you want to avoid.

The java.util.concurrent package is perfect for this kind of work. First created by
Doug Lea as a stand-alone library and later incorporated into Java 5, this
package supports concurrent programming at a higher level than the regular
Java Thread class. The ExecutorService class manages one or more threads for
you, and all you have to do is submit tasks (instances of Runnable or Callable)
to the executor to have them run. An instance of the Future class is returned,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

which is a reference to some as-yet-unknown future value that will be returned
by your task (if any). You can limit the number of threads that are created,
and you can interrupt running tasks if necessary.

To illustrate these concepts, let’s create a fun little program that calls the
Google Suggest API. Have you ever noticed that when you go to a search site
like google.com or bing.com and you start typing in a search term, you
immediately start seeing suggestions for how to complete the phrase you’re
typing? For example, if you type in the letters “and” you might see some
suggestions having to do with Android. This is implemented with a web service.

The way it works is that as you type each character into the search box, the
browser or web page makes a call to the server to see what could possibly
start with the letters you’ve typed so far. So first you type an “a” and it returns
a few likely phrases that begin with a. Then you type an “n” and it gets some
phrases that begin with an. And so forth.

Inside the server, it’s doing something very clever. Because it knows who you
are, where you are, and what you’ve searched for recently, it customizes the
results especially for you. Try this experiment: you and a friend put your
computers side by side and go to the same search site. Start typing the same
phrase a letter at a time and compare the suggestions. Chances are that
they’ll be wildly different. The final result from the search after you press
Enter will be different too.1

The Suggest Example
We’re going to create a program that calls the Suggest web service and displays
the results just like a search engine or smart address bar would. To use this
program, simply start typing a phrase. As you type, the program will use the
Suggest web service to fetch suggestions about what comes next.

1. For more information on this phenomenon, see http://en.wikipedia.org/wiki/Filter_bubble.

• 6

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Filter_bubble
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

To create this application, start with a “Hello, Android” application using
these parameters:

Application name: Suggest
Company Domain: example.org
Form factors: Phone and Tablet
Minimum SDK: API 16: Android 4.1 (Jelly Bean)
Add activity: Blank Activity
Activity Name: MainActivity
Layout Name: activity_main
Title: Suggest

Since this example accesses the Internet to make a web service call, we need
to tell Android to grant us permission.

Add this line to AndroidManifest.xml before the <application> XML tag:

suggest/src/main/AndroidManifest.xml
<uses-permission android:name="android.permission.INTERNET" />

The layout for the main activity is pretty simple: a vertical LinearLayout that
contains several rows:

• Click HERE to purchase this book now. discuss

The Suggest Example • 7

http://media.pragprog.com/titles/eband4/code/suggest/src/main/AndroidManifest.xml
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

suggest/src/main/res/layout/activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical"
android:padding="10dip" >

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/original_label" />

<EditText
android:id="@+id/original_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:hint="@string/original_hint"
android:inputType="textNoSuggestions"
android:padding="10dip"
android:textSize="18sp" />

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/result_label" />

<ListView
android:id="@+id/result_list"
android:layout_width="fill_parent"
android:layout_height="0dp"
android:layout_weight="1" />

<TextView
android:id="@+id/eband_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:gravity="bottom|right"
android:text="@string/eband" />

</LinearLayout>

In this example, we have five rows. The first row is a label telling the user
what to type in the second row, which is a text input field. The third row is
another label, followed by the list of suggestions. I wanted to publish this
example in the Play Store, so the last row is a little advertisement for the
book.

Now let’s start modifying the MainActivity class. Here’s the basic outline:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/eband4/code/suggest/src/main/res/layout/activity_main.xml
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

suggest/src/main/java/org/example/suggest/MainActivity.java
package org.example.suggest;Line 1

-

import java.util.ArrayList;-

import java.util.List;-

import java.util.concurrent.ExecutorService;5

import java.util.concurrent.Executors;-

import java.util.concurrent.Future;-

import java.util.concurrent.RejectedExecutionException;-

-

import android.app.Activity;10

import android.app.SearchManager;-

import android.content.Intent;-

import android.os.Bundle;-

import android.os.Handler;-

import android.text.Editable;15

import android.text.TextWatcher;-

import android.text.method.LinkMovementMethod;-

import android.view.View;-

import android.widget.AdapterView;-

import android.widget.AdapterView.OnItemClickListener;20

import android.widget.ArrayAdapter;-

import android.widget.EditText;-

import android.widget.ListView;-

import android.widget.TextView;-

25

public class MainActivity extends Activity {-

private EditText origText;-

private ListView suggList;-

private TextView ebandText;-

30

private Handler guiThread;-

private ExecutorService suggThread;-

private Runnable updateTask;-

private Future<?> suggPending;-

private List<String> items;35

private ArrayAdapter<String> adapter;-

-

@Override-

public void onCreate(Bundle savedInstanceState) {-

super.onCreate(savedInstanceState);40

-

setContentView(R.layout.activity_main);-

initThreading();-

findViews();-

setListeners();45

setAdapters();-

-

}-

}-

• Click HERE to purchase this book now. discuss

The Suggest Example • 9

http://media.pragprog.com/titles/eband4/code/suggest/src/main/java/org/example/suggest/MainActivity.java
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

After declaring a few variables, we define the onCreate() method starting at line
39 to initialize the threading and user interface. Don’t worry; we’ll fill out all
those other methods it calls as we go.

The findViews() method, called from line 44, just gets a handle to all the user
interface elements defined in the layout file:

suggest/src/main/java/org/example/suggest/MainActivity.java
private void findViews() {

origText = (EditText) findViewById(R.id.original_text);
suggList = (ListView) findViewById(R.id.result_list);
ebandText = (TextView) findViewById(R.id.eband_text);

}

The setAdapters() method, called from onCreate() on line 46, defines a data source
for the suggestion list:

suggest/src/main/java/org/example/suggest/MainActivity.java
/** Set up adapter for list view. */
private void setAdapters() {

items = new ArrayList<String>();
adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, items);
suggList.setAdapter(adapter);

}

In Android, an Adapter is a class that binds a data source (in this case, the list
of suggestions) to a user interface control (in this case, a ListView). We use the
standard layouts provided by Android for individual items in the list.

Next we set up the user interface handlers in the setListeners() routine (called
from line 45 of onCreate()):

suggest/src/main/java/org/example/suggest/MainActivity.java
private void setListeners() {

// Define listener for text change
TextWatcher textWatcher = new TextWatcher() {

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {

/* Do nothing */
}
public void onTextChanged(CharSequence s, int start,

int before, int count) {
queueUpdate(1000 /* milliseconds */);

}
public void afterTextChanged(Editable s) {

/* Do nothing */
}

};

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/eband4/code/suggest/src/main/java/org/example/suggest/MainActivity.java
http://media.pragprog.com/titles/eband4/code/suggest/src/main/java/org/example/suggest/MainActivity.java
http://media.pragprog.com/titles/eband4/code/suggest/src/main/java/org/example/suggest/MainActivity.java
http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

// Set listener on the original text field
origText.addTextChangedListener(textWatcher);

// Define listener for clicking on an item
OnItemClickListener clickListener = new OnItemClickListener() {

@Override
public void onItemClick(AdapterView<?> parent, View view,

int position, long id) {
String query = (String) parent.getItemAtPosition(position);
doSearch(query);

}
};

// Set listener on the suggestion list
suggList.setOnItemClickListener(clickListener);

// Make website link clickable
ebandText.setMovementMethod(LinkMovementMethod.getInstance());

}

private void doSearch(String query) {
Intent intent = new Intent(Intent.ACTION_WEB_SEARCH);
intent.putExtra(SearchManager.QUERY, query);
startActivity(intent);

}

We define two listeners: one that is called when the input text is changed and
one that is called when one of the suggestions is clicked. queueUpdate() puts a
delayed update request on the main thread’s to-do list using a Handler. We
arbitrarily use a 1,000-millisecond delay for text changes.

At the end of the function we call the setMovementMethod() method on the
advertisement view. This makes the hyperlink in the ad text live. If the user
taps on the link, a browser window will open on that address.

• Click HERE to purchase this book now. discuss

The Suggest Example • 11

http://pragprog.com/titles/eband4
http://forums.pragprog.com/forums/eband4

