Extracted from:

Practical Microservices

Build Event-Driven Architectures
with Event Sourcing and CQRS

This PDF file contains pages extracted from Practical Microservices, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pra ematic
ogrammers

Practical Microservices

Build Event-Driven Architectures
with Event Sourcing and CQRS

Ethan Garofolo
edited by Adaobi Obi Tulton






Practical Microservices

Build Event-Driven Architectures
with Event Sourcing and CQRS

Ethan Garofolo

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Jasmine Kwityn

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-645-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2020


https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Julie, Sofia, Eva, and Angelo—

you are life and joy






Handling Events
An Aggregator’s existence is define by a two-step process:

1. Receive an event.
2. Handle it by updating View Data somewhere.

In our case, we're only going to use PostgreSQL tables for View Data, but as
you’ll learn, we're not limited to only relational tables.

(Re)Introducing the RDBMS

Okay, so technically we used a relational database when writing to our Mes-
sage Store in Chapter 3, Putting Data in a Message Store, on page ?. That
was optimized for writing data. In this chapter we're going to build tables
optimized for reading data. You won't find third normal form' tables here.
Those are optimized for writing. What if we could build our database schema
in such a way that every screen only required querying for a single row? Let’s

start with a migration to define the schema we're going to write to:
video-tutorials/migrations/20180303013723_create-pages.js
exports.up = knex =>

knex.schema.createTable('pages', table => {
table.string('page name').primary()

table.jsonb('page data').defaultsTo('{}"')
1)

exports.down = knex => knex.schema.dropTable('pages')

Two columns, and one of them is a JSON blob. The idea is that there are
some mostly static pages on our site. The home page is an example. We want
to get the data for these pages with a single query and no joins.

To that end, this migration creates a two-column table that houses key-value
pairs. The keys are the strings in the page name column, and the values are
jsonb objects that default to the empty object but that will be filled out with
the data needed to render the pages they represent. For example, the home
page might have home and { "videosWatched": 42, "lastViewProcessed": 24 } for page_name
and page_data, respectively. videosWatched is the number of videos watched, and
lastViewProcessed is how we handle idempotence. It is the id of the last message
incorporated into the View Data. So if we see a message with a lower number
or equal number, then we know that the View Data already incorporates that
message.

1. https://en.wikipedia.org/wiki/Third_normal_form

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/migrations/20180303013723_create-pages.js
https://en.wikipedia.org/wiki/Third_normal_form
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

°8

Writing Your First Aggregator

Since this is the first Aggregator, here is the basic shape of one:

video-tutorials/src/aggregators/home-page.js
function createHandlers ({ queries }) {
return {
}
}

function createQueries ({ db }) {
return {
}

}

function build ({ db, messageStore }) {
const queries = createQueries({ db })
const handlers = createHandlers({ queries })
return {
queries,
handlers,
}
}

module.exports = build

Our Aggregators handle messages, so they have handlers. They also interact
with a database, so they have queries. There is a top-level function, which we
name build that receives dependencies, namely db and messageStore, references
to the database and the Message Store, respectively. The top-level function
passes them to the queries and handlers. This shape is not a hard-and-fast rule
for Aggregators in general, but is what most of our Aggregators will have.

With that shape in place, let’s write our message handlers.

Handling Asynchronous Messages

Message handlers are functions that receive a message and do something.
For Components thatll mean carrying out some state-changing business
function. For Aggregators that means updating a View Data.

We define an autonomous component’s message handlers as a JavaScript
object whose keys are the message types the component handles. This
Aggregator needs to handle VideoViewed events, and when we get one, we want
to increment the global watch count by 1. So let’s write that first handler:

video-tutorials/src/aggregators/home-page.js
function createHandlers ({ queries }) {
return {

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Handling Asynchronous Messages ® 9

VideoViewed: event => queries.incrementVideosWatched(event.globalPosition)
}
}
createHandlers receives the queries from the top-level function, and returns an
object with key VideoViewed, whose value is a function that takes an event and
delegates the appropriate action to queries.incrementVideosWatched. At a glance,
we can tell how this Aggregator handles this event, and that’s good.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

°10

Let’s write that query function:

video-tutorials/src/aggregators/home-page.js
function incrementVideosWatched (globalPosition) {
const queryString = °
UPDATE
pages
SET
page data = jsonb set(
jsonb_set(
page data,
'{videosWatched}',
((page data ->> 'videosWatched')::int + 1)::text::jsonb
),
'{lastViewProcessed}"',
:globalPosition: :text::jsonb
)
WHERE
page name = 'home' AND
(page data->>'lastViewProcessed')::int < :globalPosition

return db.then(client => client.raw(queryString, { globalPosition }))

}

Oof. That’s a gnarly query if you're unfamiliar with PostgreSQL jsonb columns,
but we can work through it. It has the same structure as any UPDATE query
you've worked with before:

UPDATE

pages
SET

-- the jsonb part
WHERE

page name = 'home' AND

(page_data->>'lastViewProcessed')::int < :globalPosition

It’s doing an UPDATE against the pages. It SETs something that we ignore until
next paragraph, and it only does it on rows WHERE certain criteria are met.
Those criteria are first that the page_name column equals home. Second, we're
going to go into the page_data json and make sure its lastViewProcessed property,
which we’ll explicity treat as an integer, is less than the globalPosition of the
event we're handling.

Now, what in tarnation are we SETting? It’s actually two calls to PostgreSQL’s
jsonb_set* function. jsonb_set works similarly to JavaScript’s Object.assign that we
use throughout the book. Let’s consider the inner call first:

2. https://www.postgresqgl.org/docs/11/functions-json.html

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
https://www.postgresql.org/docs/11/functions-json.html
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Handling Asynchronous Messages ® 11

jsonb_set(

page data,

'{videosWatched}',

((page data ->> 'videosWatched')::int + 1)::text::jsonb
),

The first argument page_data means we're operating on the page_data column.
This is likely not a surprise since this is a two-column table, and the other
column is not a jsonb column. We're setting a property on the object stored in
this column. What property? That's the second argument, {videosWatched}.

Now, what value are we going to set it to? Take the videosWatched property of
the page data column, page_data ->> 'videosWatched', and cast it to an integer.
PostgreSQL doesn’t know that this is an integer property, so we tell it that it
is by adding :int, getting us to (page_data ->> 'videosWatched')::int. Then add 1 to
it, or (page_data ->> 'videosWatched')::int + 1.

Next, we have to do some more casting because this column stores jsonb and
not integers. Unfortunately, we can’t convert directly from integers to jsonb,
so we first cast it all to text, ((page_data ->> 'videosWatched')::int + 1)::text, and then
finally from text to jsonb, ((page_data ->> 'videosWatched')::int + 1)::text::;jsonb. Equivalent
JavaScript would be:

const pageData = {
videosWatched: 0,
lastViewProcessed: 0

}

const videosWatchedUpdate = {
videosWatched: pageData.videosWatched + 1

}
const result = Object.merge({}, pageData, videosWatchedUpdate)

Now, here’s the isolated outer call:

jsonb_set(
result of inner call,
'{lastViewProcessed}',
:globalPosition: :text::jsonb
)

It is similar, only instead of starting with the value in page_data, we start with
the value that results from updating the videosWatched count. The return value
of the inner call becomes the starting point for the second call. This time we're
updating the lastViewProcessed property, and we’re setting it to the globalPosition
of the event we're processing. But again, we have to cast it to text and then
again to jsonb. There are a lot colons in that last argument, so here’s a visual
breakdown of them shown in the figure on page 12.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

°12

knex's
protection PostgreSQL
against cast to jsonb
SQLinjection

1d::text::;jsonb

PostgreSQL
castto text

We have :globalPosition because of knex—we’ll bind that to the value of the event’s
globalPosition. Then there’s ::text to get to text and finally ::jsonb to get to jsonb.

Getting Idempotent with It

If you were casually reading along up to this point, this is a heads-up that
what we're about to say is possibly the most important topic when working
with microservices. We're going to talk about idempotence.

The word “idempotence” literally means “same power,”” and the idea is that
if a function is idempotent, there are only two states that matter—it having
been called zero times, and it having been called one or more times. Additional
calls have no additional side effects.

This is as important to microservices as oxygen is to you, dear reader. Mes-
saging. Systems. Fail. You will see the same message more than once, and it
is physically impossible to guarantee exactly-once delivery. As software
developers, we build our abstractions in the sky, but ultimately all of our
programs execute on physical hardware. So, you as the consumer of messages
in a message-based architecture must account for the fact that you'll eventu-
ally see the same message more than once. You must write idempotent mes-
sage handlers. Go idempotent, or go home, as they say.

This handler is idempotent because of the way the increment query is written.
Notice the WHERE clause. Every event the Aggregator processes will go through
this query, and the query only updates rows whose lastViewProcessed property
is less than the id of the current event. So, if we see an event a second time,
lastViewProcessed will be equal to or greater than said event, and the query

3. https://en.wikipedia.org/wiki/ldempotence

« Click HERE to purchase this book now. discuss


https://en.wikipedia.org/wiki/Idempotence
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Line 1

20

Connecting to the Live Message Flow ® 13

becomes a no-op.* Call it as many times as you want, we're only going to
increment the count once for a given message.

As we write additional Aggregators and start branching into Components,
we’ll see other idempotence patterns. It isn’t always as simple as it was here,
but every message handler we write will be idempotent.

Connecting to the Live Message Flow

Now that we have an Aggregator, we need to hook it up to the live flow of
messages. An Aggregator is meant to be constantly running, picking up
messages more or less as they occur. To hook this one up to that flow, we
head back to the top-level function:

video-tutorials/src/aggregators/home-page.js
function build ({ db, messageStore }) {
const queries = createQueries({ db })
const handlers = createHandlers({ queries })
const subscription = messageStore.createSubscription({
streamName: 'viewing',
handlers,
subscriberId: 'aggregators:home-page'

1)

function init () {
return queries.ensureHomePage()

}

function start () {
init().then(subscription.start)

}

return {
queries,
handlers,
init,
start
}
}

Line 4 calls messageStore.createSubscription, which doesn’t exist yet. We’ll write
that in the next chapter, Chapter 5, Subscribing to the Message Store, on

e A streamName to subscribe to. When you hook into the live flow of messages,
you do so by observing a specific stream, particularly a category stream.

4. https://en.wikipedia.org/wiki/NOP

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
https://en.wikipedia.org/wiki/NOP
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

° 14

e handlers to handle (in an idempotent manner!) the messages on that stream.
As we said on page 8, we represent handlers as a JavaScript object whose

keys are the message types we handle.

e A globally unique subscriberld. When we write the subscription code in
Chapter 5, Subscribing to the Message Store, on page ?, we'll use streams
to record how far along in the flow of messages a given subscription is.
The name of that stream is partially derived from this subscriberld, which

is why they must be globally unique.

Merely creating a subscription doesn’t actually start the flow of messages,
however—that’s what the start function at line 14 is for. We're taking the
convention that every autonomous component must expose a start function
to actually begin its polling cycle. We don’t want that cycle to start in test,
for example.

This start function has one piece of work to do before releasing the message
hounds. queries.incrementVideosWatched, which you wrote on page 10, assumes
that the row it’s going to update emstsThlsassumptlonlsalotea51er than
checking to see if it exists every time we process a message, but it does mean
we need to put that row in place. So, start calls init, which in turn calls

queries.ensureHomePage:

video-tutorials/src/aggregators/home-page.js
function ensureHomePage () {
const initialData = {
pageData: { lastViewProcessed: 0, videosWatched: 0 }

}

const queryString = °
INSERT INTO
pages(page name, page data)
VALUES
("home', :pageData)
ON CONFLICT DO NOTHING

return db.then(client => client.raw(queryString, initialData))

}

This function sets up what this row looks like before we’'ve seen any messages
and then inserts it into the database using ON CONFLICT DO NOTHING. We'll insert
this row exactly once, no matter how many times we start this Aggregator.

Congrats! You just wrote your first Aggregator. You took the flow of VideoViewed
events and turned it into a View Data that the home page application can
use. You could make up additional aggregations, and in fact, the exercises at

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/aggregators/home-page.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Configuring the Aggregator ® 15

the end of this chapter include a challenge to do that. This is where message-
based architectures become particularly interesting. You can slice and dice
the same source data into whatever shape is required. And since you were
saving all that source data, you can do this going all the way back to when
you first turned the system on.

Okay, break time is over, we still have a little work to do to connect this the
running system.

Configuring the Aggregator

We need to pull this Aggregator into config.js and modify src/index.js so that it
calls the Aggregator’s start function. config.js first, then start:

video-tutorials/src/config.js
/] ...
const createHomePageAggregator = require('./aggregators/home-page')
function createConfig ({ env }) {
/] ...
const homePageAggregator = createHomePageAggregator({
db: knexClient,
messageStore
1)
const aggregators = [
homePageAggregator,
1

const components = [

]

return {
/] ...
homePageAggregator,
aggregators,
components,

}

}

We start by requireing the Aggregator. Then inside of createConfig we instantiate
it by passing it the db and messageStore reference that were instantiated in code
represented by the ellipses—we won’t keep reprinting the configuration from
previous chapters. The we set up an array named Aggregators and put home-
PageAggregator in it. We’ll use this array to start all of our Aggregators. Since
we're here in the file, we also make a similar array for components. It's empty
for now because we won’t write our first Component until Chapter 6, Regis-

components to config’s return object.

Now that these pieces are configured, we can start this Aggregator in src/index.js:

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

*16

video-tutorials/src/index.js

function start () {
config.aggregators.forEach(a => a.start())
config.components.forEach(s => s.start())
app.listen(env.port, signalAppStart)

}

To the app.listen call that starts the Express application, we added a couple of
lines to start all the Aggregators and Components. config.aggregators.foreach loops
over the aggregators array we set up in config.js and calls each Aggregator’s start
function. It does the same thing for components, which at this point is empty.

And just like that, you have an Aggregator that is configured to connect to
the live flow of messages and aggregate a View Data the home page Application
can use to show the global videos watched count.

Having the Home Page Application
Use the New View Data

Speaking of the home page application, it currently isn't using our Aggregator’s
output. Let’s fix that:

video-tutorials/src/app/home/index.js
function createQueries ({ db }) {
function loadHomePage () {
return db.then(client =>
client('pages"')
.where({ page name: 'home' })
Llimit (1)
.then(camelCaseKeys)
.then(rows => rows[0])
)
}

return {
loadHomePage
}
}

We just need to modify the loadHomePage query. Instead of querying the mono-
lithic videos table, we're going to query the special-purpose pages table. We
want the one where page_name is equal to home. Notice how there was no sum-
mation to do, no joins. We built laser-focused View Data to serve this partic-
ular page. If we have other View Data needs, we can build them using all the
same events, and the home page Application won’t have to change one wit.
That’s the power of autonomy.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/home/index.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

