
Extracted from:

Programming Elixir 1.3

This PDF file contains pages extracted from Programming Elixir 1.3, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Elixir 1.3

Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-200-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

A Vain Attempt at a Justification
I’m a language nut. I love trying languages out, and I love thinking about
their design and implementation. (I know; it’s sad.)

I came across Ruby in 1998 because I was an avid reader of comp.lang.misc
(ask your parents). I downloaded it, compiled it, and fell in love. As with any
time you fall in love, it’s difficult to explain why. It just worked the way I work,
and it had enough depth to keep me interested.

Fast-forward 15 years. All that time I’d been looking for something new that
gave me the same feeling.

I came across Elixir a while back, but for some reason never got sucked in.
But a few months before starting this book, I was chatting with Corey Haines.
I was bemoaning the fact that I wanted a way to show people functional pro-
gramming concepts without the academic trappings those books seem to
attract. He told me to look again at Elixir. I did, and I felt the same way I felt
when I first saw Ruby.

So now I’m dangerous. I want other people to see just how great this is. I want
to evangelize. So my first step is to write a book.

But I don’t want to write another 900-page Pickaxe book. I want this book to
be short and exciting. So I’m not going into all the detail, listing all the syntax,
all the library functions, all the OTP options, or….

Instead, I want to give you an idea of the power and beauty of this program-
ming model. I want to inspire you to get involved, and then point to the online
resources that will fill in the gaps.

But mostly, I want you to have fun.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Acknowledgments
It seems to be a common thread—the languages I fall in love with are created
by people who are both clever and extremely nice. José Valim, the creator of
Elixir, takes both of these adjectives to a new level. I owe him a massive thank-
you for giving me so much fun over the last 18 months. Along with him, the
whole Elixir core team has done an amazing job of cranking out an entire
ecosystem that feels way more mature than its years. Thank you, all.

A conversation with Corey Haines reignited my interest in Elixir—thank you,
Corey, for good evenings, some interesting times in Bangalore, and the
inspiration.

Bruce Tate is always an interesting sounding board, and his comments on
early drafts of the book made a big difference. And I’ve been blessed with an
incredible number of active and insightful beta readers who have made liter-
ally hundreds of suggestions for improvements. Thank you, all.

A big tip of the hat to Jessica Kerr, Anthony Eden, and Chad Fowler for letting
me steal their tweets.

Kim Shrier seems to have been involved with my writing since before I started
writing. Thanks, Kim, for another set of perceptive and detailed critiques.

The crew at Potomac did their customary stellar job of indexing.

Susannah Pfalzer was a voice of sanity throughout the project (as she is in
so many of our Bookshelf projects), and Janet Furlow kept us all honest.

Finally, this is the first time I’ve written a book with an editor who works
down at the prose level. For the first edition, my editor was Lynn Beighley,
who took what I felt was finished text and systematically showed me the error
of my assumptions. For this latest version, Susannah held my hand. The
book is way better for their advice. Thank you both.

Dave Thomas

dave@pragdave.me
Dallas, TX, August 2016

A Vain Attempt at a Justification • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

CHAPTER 1

Take the Red Pill
The Elixir programming language wraps functional programming with
immutable state and an actor-based approach to concurrency in a tidy,
modern syntax. And it runs on the industrial-strength, high-performance,
distributed Erlang VM. But what does all that mean?

It means you can stop worrying about many of the difficult things that cur-
rently consume your time. You no longer have to think too hard about pro-
tecting your data consistency in a multithreaded environment. You worry less
about scaling your applications. And, most importantly, you can think about
programming in a different way.

Programming Should Be About Transforming Data
If you come from an object-oriented world, then you are used to thinking in
terms of classes and their instances. A class defines behavior, and objects
hold state. Developers spend time coming up with intricate hierarchies of
classes that try to model their problem, much as Victorian gentleman scientists
created taxonomies of butterflies.

When we code with objects, we’re thinking about state. Much of our time is
spent calling methods in objects and passing them other objects. Based on
these calls, objects update their own state, and possibly the state of other
objects. In this world, the class is king—it defines what each instance can
do, and it implicitly controls the state of the data its instances hold. Our goal
is data-hiding.

But that’s not the real world. In the real world, we don’t want to model abstract
hierarchies (because in reality there aren’t that many true hierarchies). We
want to get things done, not maintain state.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Right now, for instance, I’m taking empty computer files and transforming
them into files containing text. Soon I’ll transform those files into a format
you can read. A web server somewhere will transform your request to download
the book into an HTTP response containing the content.

I don’t want to hide data. I want to transform it.

Combine Transformations with Pipelines
Unix users are used to the philosophy of small, focused command-line tools
that can be combined in arbitrary ways. Each tool takes an input, transforms
it, and writes the result in a format that the next tool (or a human) can use.

This philosophy is incredibly flexible and leads to fantastic reuse. The Unix
utilities can be combined in ways undreamed of by their authors. And each
one multiplies the potential of the others.

It’s also highly reliable—each small program does one thing well, which makes
it easier to test.

There’s another benefit. A command pipeline can operate in parallel. If I write

$ grep Elixir *.pml | wc -l

the word-count program, wc, runs at the same time as the grep command.
Because wc consumes grep’s output as it is produced, the answer is ready with
virtually no delay once grep finishes.

Just to give you a taste of this kind of thing, here’s an Elixir function called
pmap. It takes a collection and a function, and returns the list that results
from applying that function to each element of the collection. But…it runs a
separate process to do the conversion of each element. Don’t worry about the
details for now.

spawn/pmap1.exs
defmodule Parallel do

def pmap(collection, func) do
collection
|> Enum.map(&(Task.async(fn -> func.(&1) end)))
|> Enum.map(&Task.await/1)

end
end

We could run this function to get the squares of the numbers from 1 to 1000.

result = Parallel.pmap 1..1000, &(&1 * &1)

And, yes, I just kicked off 1,000 background processes, and I used all the
cores and processors on my machine.

Chapter 1. Take the Red Pill • 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/elixir13/code/spawn/pmap1.exs
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

The code may not make much sense, but by about halfway through the book,
you’ll be writing this kind of thing for yourself.

Functions Are Data Transformers
Elixir lets us solve the problem in the same way the Unix shell does. Rather
than have command-line utilities, we have functions. And we can string them
together as we please. The smaller—more focused—those functions, the more
flexibility we have when combining them.

If we want, we can make these functions run in parallel—Elixir has a simple
but powerful mechanism for passing messages between them. And these are
not your father’s boring old processes or threads—we’re talking about the
potential to run millions of them on a single machine and have hundreds of
these machines interoperating. Bruce Tate commented on this paragraph
with this thought: “Most programmers treat threads and processes as a nec-
essary evil; Elixir developers feel they are an important simplification.” As we
get deeper into the book, you’ll start to see what he means.

This idea of transformation lies at the heart of functional programming: a
function transforms its inputs into its output. The trigonometric function sin
is an example—give it π⁄4, and you’ll get back 0.7071…. An HTML templating
system is a function; it takes a template containing placeholders and a list
of named values, and produces a completed HTML document.

But this power comes at a price. You’re going to have to unlearn a whole lot
of what you know about programming. Many of your instincts will be wrong.
And this will be frustrating, because you’re going to feel like a total n00b.

Personally, I feel that’s part of the fun.

You didn’t learn, say, object-oriented programming overnight. You are
unlikely to become a functional programming expert by breakfast, either.

But at some point things will click. You’ll start thinking about problems in a
different way, and you’ll find yourself writing code that does amazing things
with very little effort on your part. You’ll find yourself writing small chunks
of code that can be used over and over, often in unexpected ways (just as wc
and grep can be).

Your view of the world may even change a little as you stop thinking in terms
of responsibilities and start thinking in terms of getting things done.

And just about everyone can agree that will be fun.

• Click HERE to purchase this book now. discuss

Programming Should Be About Transforming Data • 3

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Installing Elixir
This book assumes you’re using at least Elixir 1.3. The most up-to-date
instructions for installing Elixir are available at http://elixir-lang.org/install.html. Go
install it now.

Running Elixir
In this book, I show a terminal session like this:

$ echo Hello, World
Hello, World

The terminal prompt is the dollar sign, and the stuff you type follows. (On
your system, the prompt will likely be different.) Output from the system is
shown without highlighting.

iex—Interactive Elixir
To test that your Elixir installation was successful, let’s start an interactive
Elixir session. At your regular shell prompt, type iex.

$ iex
Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:4:4] [async-threads:10]

[hipe] [kernel-poll:false] [dtrace]
Interactive Elixir (x.y.z) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

(The various version numbers you see will likely be different—I won’t bother
to show them on subsequent examples.)

Once you have an iex prompt, you can enter Elixir code and you’ll see the
result. If you enter an expression that continues over more than one line, iex
will prompt for the additional lines with an ellipsis (…).

iex(1)> 3 + 4
7
iex(2)> String.reverse "madamimadam"
"madamimadam"
iex(3)> 5 *
...(3)> 6
30
iex(4)>

The number in the prompt increments for each complete expression executed.
I’ll omit the number in most of the examples that follow.

Chapter 1. Take the Red Pill • 4

• Click HERE to purchase this book now. discuss

http://elixir-lang.org/install.html
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

There are several ways of exiting from iex—none are tidy. The easiest two are
typing Ctrl-C twice or typing Ctrl-G followed by q and Return . On some systems,
you can also use a single Ctrl- \ .

IEx Helpers

iex has a number of helper functions. Type h (followed by return) to get a list:

iex> h
IEx.Helpers

Welcome to Interactive Elixir. You are currently seeing the documentation for
the module IEx.Helpers which provides many helpers to make Elixir's shell more
joyful to work with.

This message was triggered by invoking the helper h(), usually referred to as
h/0 (since it expects 0 arguments).

You can use the h function to invoke the documentation for any Elixir module or
function:

┃ h Enum
┃ h Enum.map
┃ h Enum.reverse/1

You can also use the i function to introspect any value you have in the shell:

┃ i "hello"

There are many other helpers available:

• b/1 - prints callbacks info and docs for a given module
• c/1 - compiles a file into the current directory
• c/2 - compiles a file to the given path
• cd/1 - changes the current directory
• clear/0 - clears the screen
• flush/0 - flushes all messages sent to the shell
• h/0 - prints this help message
• h/1 - prints help for the given module, function or macro
• i/1 - prints information about the given data type
• import_file/1 - evaluates the given file in the shell's context
• l/1 - loads the given module's beam code
• ls/0 - lists the contents of the current directory
• ls/1 - lists the contents of the specified directory
• nl/2 - deploys local beam code to a list of nodes
• pid/1 - creates a PID from a string
• pid/3 - creates a PID with the 3 integer arguments passed
• pwd/0 - prints the current working directory
• r/1 - recompiles the given module's source file
• recompile/0 - recompiles the current project
• respawn/0 - respawns the current shell
• s/1 - prints spec information
• t/1 - prints type information
• v/0 - retrieves the last value from the history
• v/1 - retrieves the nth value from the history

• Click HERE to purchase this book now. discuss

Running Elixir • 5

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Help for all of those functions can be consulted directly from the command line
using the h helper itself. Try:

┃ h(v/0)

To learn more about IEx as a whole, just type h(IEx).

In the list of helper functions, the number following the slash is the number
of arguments the helper expects.

Probably the most useful is h itself. With an argument, it gives you help on
Elixir modules or individual functions in a module. This works for any modules
loaded into iex (so when we talk about projects later on, you’ll see your own
documentation here, too). For example, the IO module performs common I/O
functions. For help on the module, type h(IO) or h IO.

iex> h IO # or...
iex> h(IO)

Functions handling IO.

Many functions in this module expects an IO device as argument. An IO device must
be a PID or an atom representing a process. For convenience, Elixir provides :stdio
and :stderr as shortcuts to Erlang's :standard_io and :standard_error....

This book frequently uses the puts function in the IO module, which in its
simplest form writes a string to the console. Let’s get the documentation.

iex> h IO.puts
def puts(device \\ group_leader(), item)

Writes item to the given device, similar to write/2, but adds a newline at the end.

Another informative helper is i, which displays information about a value:

iex> i 123
Term

123
Data type

Integer
Reference modules

Integer

iex> i "cat"
Term

"cat"
Data type

BitString
Byte size

3
Description

This is a string: a UTF-8 encoded binary. It's printed surrounded by
"double quotes" because all UTF-8 codepoints in it are printable.

Chapter 1. Take the Red Pill • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Raw representation
<<99, 97, 116>>

Reference modules
String, :binary

iex> i %{ name: "Dave", likes: "Elixir" }
Term

%{likes: "Elixir", name: "Dave"}
Data type

Map
Reference modules

Map

iex> i Map
Term

Map
Data type

Atom
Module bytecode

/Users/dave/Play/elixir/bin/../lib/elixir/ebin/Elixir.Map.beam
Source

/Users/dave/Play/elixir/lib/elixir/lib/map.ex
Version

[136119987195443140315307232506105292657]
Compile time

2015-12-29 16:33:20
Compile options

[:debug_info]
Description

Use h(Map) to access its documentation.
Call Map.module_info() to access metadata.

Raw representation
:"Elixir.Map"

Reference modules
Module, Atom

iex is a surprisingly powerful tool. Use it to compile and execute entire projects,
log in to remote machines, and access running Elixir applications.

Customizing iex

You can customize iex by setting options. For example, I like showing the
results of evaluations in bright cyan. To find out how to do that, I used this:

iex> h IEx.configure
def configure(options)

Configures IEx.

The supported options are: :colors, :inspect, :default_prompt, :alive_prompt
and :history_size.

• Click HERE to purchase this book now. discuss

Running Elixir • 7

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Colors

A keyword list that encapsulates all color settings used by the shell. See
documentation for the IO.ANSI module for the list of supported colors and
attributes.

The value is a keyword list. List of supported keys:

• :enabled - boolean value that allows for switching the coloring on and off
• :eval_result - color for an expression's resulting value
• :eval_info - … various informational messages
• :eval_error - … error messages
• :stack_app - … the app in stack traces
• :stack_info - … the remaining info in stack traces
• :ls_directory - … for directory entries (ls helper)
• :ls_device - … device entries (ls helper)

. . .

I then created a file called .iex.exs in my home directory, containing

IEx.configure colors: [eval_result: [:cyan, :bright]]

If your iex session looks messed up (and things such as [33m appear in the
output), it’s likely your console does not support ANSI escape sequences. In
that case, disable colorization using

IEx.configure colors: [enabled: false]

You can put any Elixir code into .iex.exs.

Compile and Run
Once you tire of writing one-line programs in iex, you’ll want to start putting
code into source files. These files will typically have the extension .ex or .exs.
This is a convention—files ending in .ex are intended to be compiled into
bytecodes and then run, whereas those ending in .exs are more like programs
in scripting languages—they are effectively interpreted at the source level.
When we come to write tests for our Elixir programs, you’ll see that the
application files have .ex extensions, whereas the tests have .exs because we
don’t need to keep compiled versions of the tests lying around.

Let’s write the classic first program. Go to a working directory and create a
file called hello.exs.

intro/hello.exs
IO.puts "Hello, World!"

The previous example shows how most of the code listings in this book are
presented. The bar before the code itself shows the path and file name that
contains the code. If you’re reading an ebook, you’ll be able to click on this

Chapter 1. Take the Red Pill • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/elixir13/code/intro/hello.exs
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

to download the source file. You can also download all the code by visiting
the book’s page on our site and clicking on the Source Code link.1

Source file names are written in lowercase with underscores. They will have
the extension .ex for programs that you intend to compile into binary form,
and .exs for scripts that you want to run without compiling. Our “Hello, World”
example is essentially throw-away code, so we used the .exs extension for it.

Having created our source file, let’s run it. In the same directory where you
created the file, run the elixir command:

$ elixir hello.exs
Hello, World!

We can also compile and run it inside iex using the c helper:

$ iex
iex> c "hello.exs"
Hello, World!
[]
iex>

The c helper compiled and executed the source file. The [] that follows the
output is the return value of the c function—if the source file had contained
any modules, their names would have been listed here.

The c helper compiled the source file as freestanding code. You can also load
a file as if you’d typed each line into iex using import_file. In this case, local
variables set in the file are available in the iex session.

As some folks fret over such things, the Elixir convention is to use two-column
indentation and spaces (not tabs).

Suggestions for Reading the Book
This book is not a top-to-bottom reference guide to Elixir. Instead, it is
intended to give you enough information to know what questions to ask and
when to ask them. So approach what follows with a spirit of adventure. Try

1. http://pragprog.com/titles/elixir13

• Click HERE to purchase this book now. discuss

Suggestions for Reading the Book • 9

http://pragprog.com/titles/elixir13
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

the code as you read, and don’t stop there. Ask yourself questions and then
try to answer them, either by coding or searching the web.

Participate in the book’s discussion forums and consider joining the Elixir
mailing list.2,3

You’re joining the Elixir community while it is still young. Things are exciting
and dynamic, and there are plenty of opportunities to contribute.

Exercises
You’ll find exercises sprinkled throughout the book. If you’re reading an ebook,
then each exercise will link directly to a topic in our online forums. There
you’ll find an initial answer, along with discussions of alternatives from
readers of the book.

If you’re reading this book on paper, visit the forums to see the list of exercise
topics.4

Think Different(ly)
This is a book about thinking differently—about accepting that some of the
things folks say about programming may not be the full story:

• Object orientation is not the only way to design code.
• Functional programming need not be complex or mathematical.
• The bases of programming are not assignments, if statements, and loops.
• Concurrency does not need locks, semaphores, monitors, and the like.
• Processes are not necessarily expensive resources.
• Metaprogramming is not just something tacked onto a language.
• Even if it is work, programming should be fun.

Of course, I’m not saying Elixir is a magic potion (well, technically it is, but
you know what I mean). It isn’t the one true way to write code. But it’s different
enough from the mainstream that learning it will give you more perspective
and it will open your mind to new ways of thinking about programming.

So let’s start.

And remember to make it fun.

2. http://forums.pragprog.com/forums/elixir13
3. https://groups.google.com/forum/?fromgroups#!forum/elixir-lang-talk
4. http://forums.pragprog.com/forums/322

Chapter 1. Take the Red Pill • 10

• Click HERE to purchase this book now. discuss

http://forums.pragprog.com/forums/elixir13
https://groups.google.com/forum/?fromgroups#!forum/elixir-lang-talk
http://forums.pragprog.com/forums/322
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

