
Extracted from:

Programming Elixir 1.3

This PDF file contains pages extracted from Programming Elixir 1.3, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Elixir 1.3

Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-200-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 16

Nodes—The Key to Distributing Services
There’s nothing mysterious about a node. It is simply a running Erlang VM.
Throughout this book we’ve been running our code on a node.

The Erlang VM, called Beam, is more than a simple interpreter. It’s like its
own little operating system running on top of your host operating system. It
handles its own events, process scheduling, memory, naming services, and
interprocess communication. In addition to all that, a node can connect to
other nodes—in the same computer, across a LAN, or across the Internet—and
provide many of the same services across these connections that it provides
to the processes it hosts locally.

Naming Nodes
So far we haven’t needed to give our node a name—we’ve had only one. If we
ask Elixir what the current node is called, it’ll give us a made-up name:

iex> Node.self
:nonode@nohost

We can set the name of a node when we start it. With iex, use either the --name
or --sname option. The former sets a fully qualified name:

$ iex --name wibble@light-boy.local
iex(wibble@light-boy.local)> Node.self
:"wibble@light-boy.local"

The latter sets a short name.

The name that’s returned is an atom—it’s in quotes because it contains
characters not allowed in a literal atom.

$ iex --sname wobble
iex(wobble@light-boy)> Node.self
:"wobble@light-boy"

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Note that in both cases the iex prompt contains the node’s name along with
my machine’s name (light-boy).

Now I want to show you what happens when we have two nodes running. The
easiest way to do this is to open two terminal windows and run a node in
each. To represent these windows in the book, I’ll show them stacked vertically.

Let’s run a node called node_one in the top window and node_two in the bottom
one. We’ll then use the Elixir Node module’s list function to display a list of
known nodes, then connect from one to the other.

Window #1
$ iex --sname node_one
iex(node_one@light-boy)>

Window #2
$ iex --sname node_two
iex(node_two@light-boy)> Node.list
[]
iex(node_two@light-boy)> Node.connect :"node_one@light-boy"
true
iex(node_two@light-boy)> Node.list
[:"node_one@light-boy"]

Initially, node_two doesn’t know about any other nodes. But after we connect
to node_one (notice that we pass an atom containing that node’s name), the list
shows the other node. And if we go back to node one, it will now know about
node two.

iex(node_one@light-boy)> Node.list
[:"node_two@light-boy"]

Now that we have two nodes, we can try running some code. On node one,
let’s create an anonymous function that outputs the current node name.

iex(node_one@light-boy)> func = fn -> IO.inspect Node.self end
#Function<erl_eval.20.82930912>

We can run this with the spawn function.

iex(node_one@light-boy)> spawn(func)
#PID<0.59.0>
node_one@light-boy

But spawn also lets us specify a node name. The process will be spawned on
that node.

Chapter 16. Nodes—The Key to Distributing Services • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

iex(node_one@light-boy)> Node.spawn(:"node_one@light-boy", func)
#PID<0.57.0>
node_one@light-boy
iex(node_one@light-boy)> Node.spawn(:"node_two@light-boy", func)
#PID<7393.48.0>
node_two@light-boy

We’re running on node one. When we tell spawn to run on node_one@light-boy, we
see two lines of output. The first is the PID spawn returns, and the second line
is the value of Node.self that the function writes.

The second spawn is where it gets interesting. We pass it the name of node two
and the same function we used the first time. Again we get two lines of output.
The first is the PID and the second is the node name. Notice the PID’s contents.
The first field in a PID is the node number. When running on a local node,
it’s zero. But here we’re running on a remote node, so that field has a positive
value (7393). Then look at the function’s output. It reports that it is running
on node two. I think that’s pretty cool.

You may have been expecting the output from the second spawn to appear in
the lower window. After all, the code runs on node two. But it was created on
node one, so it inherits its process hierarchy from node one. Part of that
hierarchy is something called the group leader, which (among other things)
determines where IO.puts sends its output. So in a way, what we’re seeing is
doubly impressive. We start on node one, run a process on node two, and
when the process outputs something, it appears back on node one.

Your Turn
➤ Exercise: Nodes-1

Set up two terminal windows, and go to a different directory in each. Then
start up a named node in each. In one window, write a function that lists
the contents of the current directory.

fun = fn -> IO.puts(Enum.join(File.ls!, ",")) end

Run it twice, once on each node.

Nodes, Cookies, and Security
Although this is cool, it might also ring some alarm bells. If you can run
arbitrary code on any node, then anyone with a publicly accessible node has
just handed over his machine to any random hacker.

• Click HERE to purchase this book now. discuss

Naming Nodes • 7

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-1
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

But that’s not the case. Before a node will let another connect, it checks that
the remote node has permission. It does that by comparing that node’s cookie
with its own cookie. A cookie is just an arbitrary string (ideally fairly long and
very random). As an administrator of a distributed Elixir system, you need
to create a cookie and then make sure all nodes use it.

If you are running the iex or elixir commands, you can pass in the cookie
using the --cookie option.

$ iex --sname one --cookie chocolate-chip
iex(one@light-boy)> Node.get_cookie
:"chocolate-chip"

If we repeat our two-node experiment and explicitly set the cookie names to
be different, what happens?

Window #1
$ iex --sname node_one --cookie cookie-one
iex(node_one@light-boy)> Node.connect :"node_two@light-boy"
false

Window #2
$ iex --sname node_two --cookie cookie-two
iex(node_two@light-boy)>
=ERROR REPORT==== 27-Apr-2013::21:27:43 ===
** Connection attempt from disallowed node 'node_one@light-boy' **

The node that attempts to connect receives false, indicating the connection
was not made. And the node that it tried to connect to logs an error describing
the attempt.

But why does it succeed when we don’t specify a cookie? When Erlang starts,
it looks for an .erlang.cookie file in your home directory. If that file doesn’t exist,
Erlang creates it and stores a random string in it. It uses that string as the
cookie for any node the user starts. That way, all nodes you start on a partic-
ular machine are automatically given access to each other.

Be careful when connecting nodes over a public network—the cookie is
transmitted in plain text.

Naming Your Processes
Although a PID is displayed as three numbers, it contains just two fields; the
first number is the node ID and the next two numbers are the low and high
bits of the process ID. When you run a process on your current node, its node
ID will always be zero. However, when you export a PID to another node, the
node ID is set to the number of the node on which the process lives.

Chapter 16. Nodes—The Key to Distributing Services • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

That works well once a system is up and running and everything is knitted
together. If you want to register a callback process on one node and an event-
generating process on another, just give the callback PID to the generator.

But how can the callback find the generator in the first place? One way is for
the generator to register its PID, giving it a name. The callback on the other
node can look up the generator by name, using the PID that comes back to
send messages to it.

Here’s an example. Let’s write a simple server that sends a notification about
every 2 seconds. To receive the notification, a client has to register with the
server. And we’ll arrange things so that clients on different nodes can register.

While we’re at it, we’ll do a little packaging so that to start the server you run
Ticker.start, and to start the client you run Client.start. We’ll also add an API Tick-
er.register to register a client with the server.

Here’s the server code:

nodes/ticker.ex
defmodule Ticker do

@interval 2000 # 2 seconds
@name :ticker

def start do
pid = spawn(__MODULE__, :generator, [[]])
:global.register_name(@name, pid)

end

def register(client_pid) do
send :global.whereis_name(@name), { :register, client_pid }

end

def generator(clients) do
receive do
{ :register, pid } ->

IO.puts "registering #{inspect pid}"
generator([pid|clients])

after
@interval ->

IO.puts "tick"
Enum.each clients, fn client ->

send client, { :tick }
end
generator(clients)

end
end

end

• Click HERE to purchase this book now. discuss

Naming Your Processes • 9

http://media.pragprog.com/titles/elixir13/code/nodes/ticker.ex
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

We define a start function that spawns the server process. It then uses
:global.register_name to register the PID of this server under the name :ticker.

Clients who want to register to receive ticks call the register function. This
function sends a message to the Ticker server, asking it to add those clients
to its list. Clients could have done this directly by sending the :register message
to the server process. Instead, we give them an interface function that hides
the registration details. This helps decouple the client from the server and
gives us more flexibility to change things in the future.

Before we look at the actual tick process, let’s stop to consider the start and
register functions. These are not part of the tick process—they are simply
chunks of code in the Ticker module. This means they can be called directly
wherever we have the module loaded—no message passing required. This is
a common pattern; we have a module that is responsible both for spawning
a process and for providing the external interface to that process.

Back to the code. The last function, generator, is the spawned process. It waits
for two events. When it gets a tuple containing :register and a PID, it adds the
PID to the list of clients and recurses. Alternatively, it may time out after 2
seconds, in which case it sends a {:tick} message to all registered clients.

(This code has no error handling and no means of terminating the process. I
just wanted to illustrate passing PIDs and messages between nodes.)

The client code is simple:

nodes/ticker.ex
defmodule Client do

def start do
pid = spawn(__MODULE__, :receiver, [])
Ticker.register(pid)

end

def receiver do
receive do
{ :tick } ->

IO.puts "tock in client"
receiver

end
end

end

It spawns a receiver to handle the incoming ticks, and passes the receiver’s
PID to the server as an argument to the register function. Again, it’s worth
noting that this function call is local—it runs on the same node as the client.
However, inside the Ticker.register function, it locates the node containing the

Chapter 16. Nodes—The Key to Distributing Services • 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/elixir13/code/nodes/ticker.ex
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

server and sends it a message. As our client’s PID is sent to the server, it
becomes an external PID, pointing back to the client’s node.

The spawned client process simply loops, writing a cheery message to the
console whenever it receives a tick message.

Let’s run it. We’ll start up our two nodes. We’ll call Ticker.start on node one.
Then we’ll call Client.start on both node one and node two.

Window #1
nodes % iex --sname one
iex(one@light-boy)> c("ticker.ex")
[Client,Ticker]
iex(one@light-boy)> Node.connect :"two@light-boy"
true
iex(one@light-boy)> Ticker.start
:yes
tick
tick
iex(one@light-boy)> Client.start
registering #PID<0.59.0>
{:register,#PID<0.59.0>}
tick
tock in client
tick
tock in client
tick
tock in client
tick
tock in client
: : :

Window #2
nodes % iex --sname two
iex(two@light-boy)> c("ticker.ex")
[Client,Ticker]
iex(two@light-boy)> Client.start
{:register,#PID<0.53.0>}
tock in client
tock in client
tock in client
: : :

To stop this, you’ll need to exit iex on both nodes.

When to Name Processes
When you name something, you are recording some global state. And as we
all know, global state can be troublesome. What if two processes try to register
the same name, for example?

• Click HERE to purchase this book now. discuss

Naming Your Processes • 11

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

The runtime has some tricks to help us. In particular, we can list the names
our application will register in the app’s mix.exs file. (We’ll cover how when we
look at packaging an application on page ?.) However, the general rule is to
register your process names when your application starts.

Your Turn
➤ Exercise: Nodes-2

When I introduced the interval server, I said it sent a tick "about every 2
seconds." But in the receive loop, it has an explicit timeout of 2,000 ms.
Why did I say "about" when it looks as if the time should be pretty accurate?

➤ Exercise: Nodes-3
Alter the code so that successive ticks are sent to each registered client
(so the first goes to the first client, the second to the next client, and so
on). Once the last client receives a tick, the process starts back at the
first. The solution should deal with new clients being added at any time.

I/O, PIDs, and Nodes
Input and output in the Erlang VM are performed using I/O servers. These
are simply Erlang processes that implement a low-level message interface.
You never have to deal with this interface directly (which is a good thing, as
it is complex). Instead, you use the various Elixir and Erlang I/O libraries
and let them do the heavy lifting.

In Elixir you identify an open file or device by the PID of its I/O server. And
these PIDs behave just like all other PIDs—you can, for example, send them
between nodes.

If you look at the implementation of Elixir’s IO.puts function, you’ll see

def puts(device \\ group_leader(), item) do
erl_dev = map_dev(device)
:io.put_chars erl_dev, [to_iodata(item), ?\n]

end

(To see the source of an Elixir library module, view the online documentation
at http://elixir-lang.org/docs/, navigate to the function in question, and click the
Source link.)

The default device it uses is returned by the function :erlang.group_leader. (The
group_leader function is imported from the :erlang module at the top of the IO
module.) This will be the PID of an I/O server.

Chapter 16. Nodes—The Key to Distributing Services • 12

• Click HERE to purchase this book now. discuss

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-3
http://elixir-lang.org/docs/
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

So, bring up two terminal windows and start a different named node in each.
Connect to node one from node two, and register the PID returned by
group_leader under a global name (we use :two).

Window #1
$ iex --sname one
iex(one@light-boy) >

Window #2
$ iex --sname two
iex(two@light-boy) > Node.connect(:"one@light-boy")
true
iex(two@light-boy) > :global.register_name(:two, :erlang.group_leader)
:yes

Note that once we’ve registered the PID, we can access it from the other node.
And once we’ve done that, we can pass it to IO.puts; the output appears in the
other terminal window.

Window #1
iex(one@light-boy) > two = :global.whereis_name :two
#PID<7419.30.0>
iex(one@light-boy) > IO.puts(two, "Hello")
:ok
iex(one@light-boy) > IO.puts(two, "World!")
:ok

Window #2
Hello
World
iex(two@light-boy) >

Your Turn
➤ Exercise: Nodes-4

The ticker process in this chapter is a central server that sends events to
registered clients. Reimplement this as a ring of clients. A client sends a
tick to the next client in the ring. After 2 seconds, that client sends a tick
to its next client.

When thinking about how to add clients to the ring, remember to deal
with the case where a client’s receive loop times out just as you’re adding
a new process. What does this say about who has to be responsible for
updating the links?

• Click HERE to purchase this book now. discuss

I/O, PIDs, and Nodes • 13

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-4
http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

Nodes Are the Basis of Distribution
We’ve seen how we can create and interlink a number of Erlang virtual
machines, potentially communicating across a network. This is important,
both to allow your application to scale and to increase reliability. Running all
your code on one machine is like having all your eggs in one basket. Unless
you’re writing a mobile omelet app, this is probably not a good idea.

It’s easy to write concurrent applications with Elixir. But writing code that
follows the happy path is a lot easier than writing bullet-proof, scalable, and
hot-swappable world-beating apps. For that, you’re going to need some help.

In the worlds of Elixir and Erlang, that help is called OTP, and it is the subject
of the next few chapters.

Chapter 16. Nodes—The Key to Distributing Services • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir13
http://forums.pragprog.com/forums/elixir13

