
Extracted from:

Programming Google Glass
The Mirror API

This PDF file contains pages extracted from Programming Google Glass, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Google Glass
The Mirror API

Eric Redmond

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-79-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2013

http://pragprog.com

CHAPTER 6

Making Glass Social
Needless to say, computers have evolved tremendously in the past few decades.
Twenty years ago, processors were slower and ran hotter, memory was
expensive, and displays were heavy and lower quality. But for many con-
sumers, the biggest changes have been around networking. The advent of
social networking raised an entire generation into savvy computer users and
gave us the ability to express ourselves to friends and the world by sharing
photos and videos. This ability is no longer an optional attribute of a mobile
computing device.

This chapter covers the remainder of the Mirror API, which allows us to add
depth to our application beyond a simple list of cards in a timeline. Contacts
and attachments are enhancements to a Glassware. Unlike timeline items or
menus, which are the basic necessary building blocks of Glassware, these
final puzzle pieces will allow our application to store, retrieve, and share
assets with others entirely though Glass. These are the tools we can use to
add a social-network dimension to our Glassware.

Creating Contacts

A necessary component of any social activity is other contacts to share with.
A contact, in the most general sense, is an individual or a group of things (be
they humans or maybe even cats). It’s a conceptual construct on who or what
you can share with, and not necessarily other Glass users. There are two
sides to contacts in the Mirror API: the contacts resource where users can
manage their personal contacts, and timeline-item integration, where a contact
is the creator or recipient of an item.

A contact is data about a person or group, like displayName, phoneNumber, or
imageUrls. It represents someone you can share timeline items with, or someone
you wish to more easily message or call on a regular basis.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

Since Lunch Roulette is about connecting a potential patron (Glass user) with
a restaurant, it stands to reason a user may want to add a restaurant as a
contact, especially if the user plans to eat there at a later date. Let’s add
another custom menu option to a timeline item to allow a user to add the
current restaurant timeline item to his contact list. It’s just like our last
custom menu item, but this time we’ll give it the id of ADD_CONTACT to differen-
tiate it from our Alternative menu item from the last chapter.

chapter-6/src/test/book/glass/LunchRoulette.java
timelineItem.getMenuItems().add(new MenuItem()

.setAction("CUSTOM")

.setId("ADD_CONTACT")

.setRemoveWhenSelected(true)

.setValues(Collections.singletonList(new MenuValue()
.setState("DEFAULT")
.setDisplayName("Add As Contact"))

)
);

This adds a menu item to tap (and then removes it once it’s chosen), but we’ll
need to know some information about the restaurant in order to create a
contact. We have a couple of options for storing that information. Either we
can use sourceItemId to set a unique ID on the timeline item to represent a
particular restaurant, or we can set the contact to the timeline item.

You may notice that TimelineItem does not have a setContact method, but it does
allow us to setCreator(). This is a bit of a double punch, since not only does this
store our contact, allowing us to retrieve it later, but it also lets us leverage
another menu-item action, called VOICE_CALL. This will make a call directly
from the timeline item, since it calls the creator’s phone_number.

chapter-6/src/test/book/glass/LunchRoulette.java
timelineItem.getMenuItems().add(

new MenuItem().setAction("VOICE_CALL"));

Next let’s set the restaurant contact on the timeline item. Since we have a
restaurant’s name and phone number, we can add those to the contact. The
contact type can be either an INDIVIDUAL (the default) or a GROUP. We’ll keep
it as INDIVIDUAL, so it will show up in your Call menu-item contact list.

chapter-6/src/test/book/glass/LunchRoulette.java
TimelineItem timelineItem = new TimelineItem()

.setCreator(
new Contact()
.setDisplayName(restaurant.getName())
.setPhoneNumber(restaurant.getPhone())
.setType("INDIVIDUAL"))

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg/code/chapter-6/src/test/book/glass/LunchRoulette.java
http://media.pragprog.com/titles/erpgg/code/chapter-6/src/test/book/glass/LunchRoulette.java
http://media.pragprog.com/titles/erpgg/code/chapter-6/src/test/book/glass/LunchRoulette.java
http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

Mirror will call the TimelineUpdateServlet when the menu item is tapped, due to
the subscription we created at the end of Chapter 5, Tracking Movement and
User Responses, on page ?. Now we need to add another if statement to
specify what to do with an ADD_CONTACT payload.

With the menu items and contact set, creation of this timeline item will pop-
ulate a hidden display name and phone number. You can reference this with
a regular timeline.get(), then pass that same contact object to the contact
resource’s insert() once, adding a unique ID. Unlike for other objects we’ve
created (TimelineItem, Subscription), you are responsible for setting this contact’s
unique ID.

chapter-6/src/test/book/glass/notifications/TimelineUpdateServlet.java
else if("ADD_CONTACT".equals(userAction.getPayload()))
{

Mirror mirror = MirrorUtils.getMirror(userId);
Timeline timeline = mirror.timeline();
Contacts contacts = mirror.contacts();

TimelineItem timelineItem = timeline.get(itemId).execute();

Contact contact = timelineItem.getCreator();
contact.setId(UUID.randomUUID().toString());

contacts.insert(contact).execute();
}

Like all other resources with an insert() method, this generates an HTTP PUT
with a contact’s populated JavaScript Object Notation (JSON) object. You can
see all contact fields in Appendix 1, HTTP and HTML Resources, on page ?.

After you’ve deployed and tested your new menu action, you should see a
new contact in your list. You can view your list in code via contacts.list().execute(),
which returns a ContactListResponse object (similar to LocationsListResponse or
‘TimelineListResponse‘).

ContactListResponse list = contacts.list().execute();
for(Contact item : list.getItems()) {

System.out.println(item);
}

As with other resources, you can individually get, update, or delete each
contact.

Sharing Assets with Glassware

Contacts are meant to be more than simply people or businesses. Your
Glassware itself can actually be a contact. This means your users can share

• Click HERE to purchase this book now. discuss

Sharing Assets with Glassware • 7

http://media.pragprog.com/titles/erpgg/code/chapter-6/src/test/book/glass/notifications/TimelineUpdateServlet.java
http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

items with a Glassware application. In my opinion, this was an odd design
choice on Google’s part, overloading Contacts to represent living individuals
or groups and a software application. However, sharing a timeline item, such
as images or video, requires a contact to share it with. So let’s make do.

If you create a contact, coupled with a subscription to a SHARE event, then
your Glassware can respond to notifications from timeline items that your
application didn’t create, such as photographs.

We’ll expand Lunch Roulette again, this time by letting users share photos
they’ve taken of their food. Once they take a photo, they can choose to share
it with Lunch Roulette (the Twitter and Facebook apps function similarly).
After a shared timeline item is created, our callback URL will be notified. For
now we’ll just log this notification to expand upon later in this chapter.

Let’s begin by creating a new contact that represents Lunch Roulette. Just
like we added a subscription after a successful user login, we can add this
app as a contact.

chapter-6/src/test/book/glass/LunchRoulette.java
public static void addAppAsContact(HttpServletRequest req, String userId)

throws IOException
{

Mirror mirror = MirrorUtils.getMirror(req);
Contacts contacts = mirror.contacts();

Contact contact = new Contact()
.setId("lunch-roulette")
.setDisplayName("Lunch Roulette")
.setImageUrls(Collections.singletonList(

PROD_BASE_URL + "/static/images/roulette.png"))
.setPriority(0L)
.setAcceptTypes(Collections.singletonList("image/*"));

contacts.insert(contact).executeAndDownloadTo(System.out);
}

This code is called in the OAuth2Servlet’s doAuth method after a user has success-
fully logged in.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg/code/chapter-6/src/test/book/glass/LunchRoulette.java
http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

