Extracted from:

Programming Google Glass
The Mirror API

This PDF file contains pages extracted from Programming Google Glass, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

The
Pragmatic
Ogramimers

Programming
Google Glass

The Mirror API

Eric Redmond
Edited by Jacquelyn Carter

Programming Google Glass
The Mirror API

Eric Redmond

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)

Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-79-6

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2013

http://pragprog.com

CHAPTER 4

Building the Timeline

Remember history classes from school? At some point you likely encountered
a graphical chronology, populated by points in time. For example, one point
may read June 18, 1815: Napoleon loses at Waterloo, followed by a point that
reads June 22, 1815: Napoleon abdicates his throne, and so on. This is a
classic timeline, a chronological sequence of events.

In Glass, a timeline is the core organization unit through which Glassware
operates. Rather than a desktop filled with icons or a web page filled with
links, Glass stamps every card with a point in time, and places them in order.
Ordering starts from the home card and stretches to the right indefinitely.
As you scroll further right, the cards grow progressively older. Since new
cards are the closest to the home card, they are the most accessible. The
newest emails, Tweets, images, text messages, or whatever are the first
reached. Each chronological item is called a timeline item, and it’s what this
chapter is about.

So far we only have a skeleton for Lunch Roulette. It consists of a Google App
Engine (GAE)-hosted web app that lets users authorize our application, but
it doesn’t do much else. We want to populate a user’s Glass with a random
cuisine. Then the user should be able to take some action on that suggestion,
such as pin the card for later or hear a cuisine read out loud. We'll finish up
the chapter by taking advantage of Google App Engine’s cron jobs.

Mirror HTTP Requests

The Mirror API is Google’s front-end web service for populating a user’s
timeline, as well as allowing a user to interact with your web application with
custom menu items or change notifications, like geolocation. For example, if
your program issues an HTTP POST to the Mirror API’s /timeline, you'll create
a new item on a user’s timeline. The Mirror API informs the user’s Glass device

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

*6

of the update whenever the Glass device is connected to Wi-Fi. Although the
Mirror API acts as a middleman, for the sake of simplicity you can think of
calls to the Mirror API as interacting directly with a user’s Glass device. For
all of resources we cover (not just the timeline) you will interact with them
by making HTTP requests.

Glassware communicates to the Mirror API's URL endpoints, just like any
other web service, such as Google maps or the Twitter API. Your app calls
those URLs as an HTTP 1.1 protocol request, using the HTTP verbs POST,
GET, PUT/PATCH, and DELETE. Those verbs roughly correspond to CRUD
(create, read, update, delete) actions.

Glass is populated by the Google Mirror service, but Glass will not interact
directly with our GAE application. Instead, Glass will connect with Google,
and Google will act as a middle man, issuing requests to our GAE application,
which sends or receives JavaScript Object Notation (JSON), as you can see
in the following figure.

(Glass Data] (Mirror API] (Lunch Roulette)
T T

T

I I

I }

1 I

I 1

1 1

X Insert lunch ﬂ

! Mirror suggestion
~|:|<— updates

timeline

User sees
-«
new card

Figure 13—Flow of Glassware to Glass

If our GAE application needs to create some text on a user’s timeline, we issue
a POST to the Mirror API. The header and body of an HTTP request might
look like this:

POST /mirror/v1l/timeline HTTP/1.1

Host: www.googleapis.com

Authorization: Bearer e057d4ea363fbab414a874371da253dba3d713bc
Content-Type: application/json

Content-Length: 25

{"text": "Italian"}

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

Mirror HTTP Requests ® 7

Of course, we don't really want to handle the complexity of building raw HTTP
requests. So instead we write code that generates and delivers proper mes-
sages, including the Authorization Bearer token. The code in this book is Java,
but you can interact with the Mirror API using any code that generates and
consumes well-formed HTTP messages.

String userId = SessionUtils.getUserId(req);
Credential credential = AuthUtils.getCredential(userId);

Mirror mirror = new Mirror.Builder(
new UrlFetchTransport(),
new JacksonFactory(),
credential)
.setApplicationName("Lunch Roulette")
.build();

Timeline timeline = mirror.timeline();

Starting at the top, we get the userld and credentials that were stored as part of
the authorization steps in Chapter 3, Authorizing Your Glassware, on page

? (note that req is just the current HttpServietRequest).

We use those credentials to build a Mirror object. This object handles all of
the communication with Google’s Mirror API, especially building the Authorization
HTTP header field. This is how Google knows that your app is allowed to use
the Mirror API, which user’s Glass data you want to manipulate, and that
the user has allowed you to manipulate that data.

Every step we've taken so far will be executed every time we need to commu-
nicate with Mirror, so let’s wrap that up into a helper class called MirrorUtils.

chapter-4/src/test/book/glass/MirrorUtils.java
public static Mirror getMirror(HttpServletRequest req)
throws IOException
{
String userId = SessionUtils.getUserId(req);
Credential credential = AuthUtils.getCredential(userId);
return getMirror(credential);

}

public static Mirror getMirror(String userId)
throws IOException

{
Credential credential = AuthUtils.getCredential(userlId);

return getMirror(credential);

}

public static Mirror getMirror(Credential credential)
throws IOException

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg/code/chapter-4/src/test/book/glass/MirrorUtils.java
http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

*8

{
return new Mirror.Builder(
new UrlFetchTransport(),
new JacksonFactory(),
credential)
.setApplicationName("Lunch Roulette")
.build();
}

Then use getMirror() in LunchRoulette to insert a new timeline item.

chapter-4/src/test/book/glass/LunchRoulette.java
public static void insertSimpleTextTimelineItem(HttpServletRequest req)
throws IOException

{
Mirror mirror = MirrorUtils.getMirror(req);
Timeline timeline = mirror.timeline();

TimelineItem timelineltem = new TimelinelItem()
.setText(getRandomCuisine());

timeline.insert(timelineItem).executeAndDownloadTo(System.out);

}

From the Mirror object we get a timeline object via the timeline() method, which
we’ll use to manipulate a user’s timeline. Every Mirror API resource is accessed
in Java from the Mirror object. In later chapters we’ll use the location, sub-
scription, and contacts resources by calling locations(), subscriptions(), and contact(),
respectively.

With our timeline object in hand, we decorate a simple Timelineltem object and
insert it into the timeline. Calling executeAndDownloadTo() and passing in System.out
will stream the Mirror’s raw JSON response to your Android Developer Tools
console, giving us something like the following. It’s a useful method for
debugging purposes, but not much else, so we’ll generally call the shorter
execute() method.

{
"kind": "mirror#timelineItem",
"id": "1234567890",
"selfLink": "https://www.googleapis.com/mirror/v1/timeline/1234567890",
"created": "2013-09-05T17:50:18.738Z",
"updated": "2013-09-05T17:50:18.738Z",
"etag": "\"hzfI85yuOlKQdtWV4P01jAbQxWw/Ur8Sr0qy1BQ0rj5CxBMIxX7-qog\"",
"text": "Italian"
}

We'll do all of the work within the LunchRoulette class. To test the preceding
code, replace your existing LunchRouletteServlet’'s doGet() method with the following

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg/code/chapter-4/src/test/book/glass/LunchRoulette.java
http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

Mirror HTTP Requests ® 9

code. Rather than generating an HTML page in the browser with a random
cuisine, it populates your Glass timeline with a food suggestion.

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws IOException, ServletException

{

LunchRoulette.insertSimpleTextTimelineItem(req);

resp.setContentType("text/plain");
resp.getWriter().append("Inserted Timeline Item");

}

You can now run the project and visit the http://localhost:8888/lunchroulette URL
(assuming you're running the code locally on the default port 8888) on a web
browser. It will trigger the creation of this card in your Glass, which looks
like the following figure.

ltalian

just now

Figure 14—Lunch Roulette card

We've made a card! Visiting the /lunchroulette path in a browser is an easy way
to test the creation of timeline items. It’s useful for testing, but not quite so
much in a production sense. Near the end of this chapter, we’ll discuss how
to automate card creation in a more meaningful way.

We're off to a good start, but let’s see what more we can do to with timeline
items.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg
http://forums.pragprog.com/forums/erpgg

