
Extracted from:

Programming Google Glass,
Second Edition

Build Great Glassware Apps with the Mirror API and GDK

This PDF file contains pages extracted from Programming Google Glass, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Google Glass,
Second Edition

Build Great Glassware Apps with the Mirror API and GDK

Eric Redmond

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-18-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—October 22, 2014

http://pragprog.com
rights@pragprog.com

Most of the previous chapter applied to Android applications in general, but
now we’re going to cover a distinctly Glass feature. If you describe Google
Glass to most people, images of an endless timeline of static cards don’t
generally enter their minds. Instead, folks imagine something more interac-
tive—applications that respond in real time. The Mirror API we covered in
Part One was entirely about generating static cards in the timeline, but if we
desire a timeline card to be more interactive, then Live Cards are the answer.

In this chapter we’ll create an app that displays technical information about
your Glass device, such as wifi strength, locale information, and battery
temperature, all updated live in the timeline. This Live Card will change in
real time when any values change. When making this app, we’ll design a
complex card layout using an XML configuration, and update the values it
displays using both a Service and a Broadcast Receiver. Furthermore, we’ll
include a menu overlay, rendered by an Activity.

Planning a Live Card Project
In the last chapter we made an app that displayed a message to a user
whenever our Glass device was plugged or unplugged. Although it was a
decent example of implementing a Broadcast Receiver, it was hardly a good
Glassware design. The message is short, exists outside of any normal Glass
card, and it’s sort of awkward to require that a user keep Glass on their face
as they plug and unplug the USB.

A better design would be a single, easy to access card that changes state
based on whether Glass is plugged in or not. This is where a Live Card comes
in.

A Live Card application has a different lifecycle than an Activity. When we
launch an Activity, it takes over the screen, and when we close the app it
ceases to function. But as long as an Activity runs we could update its View
on the screen indefinitely.

On the other hand, static cards created via the Mirror API are part of the
timeline, but they rarely change. At least, they aren’t real time.

But what if we want the best of both worlds—an application that runs as a
card in the timeline, but with a view that we can update live whenever it suits
us? Such a card would be most useful near the home card, where it’s easy
to access, rather than buried somewhere in the timeline’s past.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

Live Card Lifecycle
When a Live Card application is launched, rather than living in the timeline
to the right of the home card, it lives immediately to the left, as you can see
in the following figure. This makes it easy to launch, look at, and return to
again whenever you want to see how the card has been updated.

Figure 39—The Live Card is Left of the Home Card

This is a useful attribute for a range of applications, and is the most common
type of Glassware you’re likely to create. You get the power and benefits of
an Activity, with the convenience of existing in the Glass timeline. Unlike
static cards that always represent a point in history, a Live Card always rep-
resents now. Hence, its exalted place as the left hand to the almighty home
card.

A LiveCard is not a View in itself. The LiveCard class is a bridge between a regular
Android View and Glass’s management of that View. This is important to keep
in mind as we explore our first project.

Since a LiveCard can remain active even if a user switches to a different
timeline card, it needs to be kept alive by a Service. This Service is responsible
for creating the LiveCard and acting as its Context.

An important concept to understand about LiveCards is that they are mere
containers. A LiveCard needs a View to show, just as does an Android Activity.
There is an easy way to render a display on a LiveCard, as well as two hard
ways. We’ll start with the easiest, which is RemoteViews.1 We’ll cover a
harder method in Chapter 12, Advanced Rendering and Navigation, on page
? using a screen callback object.

1. http://developer.android.com/reference/android/widget/RemoteViews.html

• 4

• Click HERE to purchase this book now. discuss

http://developer.android.com/reference/android/widget/RemoteViews.html
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

RemoteViews is a pretty easy concept, but is unlike the Views we created before.
It’s an object containing instructions for building a View. You generally define
this RemoteViews object in one process, but it is executed remotely on another
process.

This is important because the Glass timeline is its own Android process,
distinct from our application. So we create a RemoteViews object in our Service,
then populate it with an XML-defined layout and whatever view values we’ll
want to see. These could be text view values, or colors, or images, or a dozen
other views. When the LiveCard is ready to be published, the remote layout
information is rendered as an active view hierarchy on the Glass timeline
process.

With this basic overview of LiveCards and RemoteViews, we’re ready to go
through the Stats project.

Collecting Android Stats
The project we’re going to investigate in this chapter creates a LiveCard that
displays Glass device statistics, named Stats. The information we’ve chosen
to display are: battery power level, battery voltage, battery temperature, the
Glass device’s locale language and country, current time, whether the USB
cable is plugged in, and an icon that represents wifi strength. When we’re
done, your card looks something like this.

Figure 40—Our Live Card Stats Screen

Note that these values are retrieved from various sources, either from
extracting language and time information from the device Locale object…

// Get the device's locale

• Click HERE to purchase this book now. discuss

Planning a Live Card Project • 5

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

Configuration config = getResources().getConfiguration();
String language = config.locale.getDisplayLanguage();

…or getting values from Global settings…

// Check if wifi is turned on
ContentResolver cr = context.getContentResolver();
int wifiOn = Settings.Global.getInt(cr, Settings.Global.WIFI_ON);

…or requesting information from a System Service…

// Get wifi signal strength
WifiManager wifiManager =

(WifiManager)context.getSystemService(Context.WIFI_SERVICE);
int rssi = wifiManager.getConnectionInfo().getRssi();
int strength = WifiManager.calculateSignalLevel(rssi, 4) + 1;

…to the most common method, which we’ll employ. We register a Broadcast
Receiver to listen for relevant Intents, like the change in a battery’s state, and
extract extra data from the Intent object.

// EXTRA_TEMPERATURE is the battery temperature in tenths of a degree C
int temp = intent.getIntExtra(BatteryManager.EXTRA_TEMPERATURE, 0) / 10;

We place the code to gather this system’s information into a helper class
named StatsUtil. As an example, the getBatteryLevel method works like this.

chapter-11/Stats/src/glass/stats/StatsUtil.java
public static int getBatteryLevel(Intent intent) {

// EXTRA_SCALE gives EXTRA_LEVEL a maximum battery level
int scale = intent.getIntExtra(BatteryManager.EXTRA_SCALE, 100);
float level = (float)intent.getIntExtra(BatteryManager.EXTRA_LEVEL, 0) / scale;
Log.d("StatsUtil", "power: " + (int)level * 100);
return (int)level * 100;

}

We won’t spend any more time on the details of these methods. Feel free to
read the code if you’re interested—there are many types of information stored
in an Android system, and they’re well documented on the Android developer
website.2 What’s of interest for our Glassware development is how you decide
when to change the information (BroadcastReceiver) and how to display that
information (RemoteViews plus view layouts). Those are points we’ll dig deeper
into for our Stats project.

2. http://developer.android.com/guide/

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg2/code/chapter-11/Stats/src/glass/stats/StatsUtil.java
http://developer.android.com/guide/
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

Implementing a Live Card Glassware
With the basic ideas and tools out of the way, it’s time to take a look at our
Stats project. Since we know we want to create a Live Card, we need a Service
to launch and manage the LiveCard. Our project’s Service is called the
StatsService component.

Similar to what we saw with Activities in Chapter 10, An Android Introduction
on Glass, on page ?, the Service object also follows a lifecycle. Ours will begin
with onStartCommand(). Services end with onDestroy(), which we’ll also implement.
Technically, we also will need to implement onBind() because it’s required by
the abstract parent class. We’ll use this method in Chapter 12, Advanced
Rendering and Navigation, on page ?, but let’s pretend like it doesn’t exist,
for now.

We only want one LiveCard for this Service. It’s generally considered bad form to
create more than one LiveCard per Service, so if no liveCard exists, we make a
new one with a unique tag name. Rather than thinking too much about a
good unique name, it’s just as easy to name it after our service class name.

chapter-11/Stats/src/glass/stats/StatsService.java
public final static String TAG = StatsService.class.getName();

public int onStartCommand(Intent intent, int flags, int startId) {
if(liveCard == null) {

liveCard = new LiveCard(this, TAG);
liveCard.setViews(remoteViews());
liveCard.setAction(buildAction());
liveCard.publish(PublishMode.REVEAL);

}
return START_STICKY;

}

With our LiveCard object in hand, we set some values (we’ll cover that in a
moment) and publish the Card. Setting the PublishMode.REVEAL means that once
this card’s views are loaded, show the user this card. The other option is
PublishMode.SILENT, which will load the LiveCard in the background without
interrupting the user. We return START_STICKY, which means that this Service
should continue running in the background until we explicitly stop it.

Destroying a LiveCard is simple—just be sure to unpublish the object if it’s
still published, and remove the Service field reference.

chapter-11/Stats/src/glass/stats/StatsService.java
public void onDestroy() {

if(liveCard != null && liveCard.isPublished()) {
liveCard.unpublish();

• Click HERE to purchase this book now. discuss

Implementing a Live Card Glassware • 7

http://media.pragprog.com/titles/erpgg2/code/chapter-11/Stats/src/glass/stats/StatsService.java
http://media.pragprog.com/titles/erpgg2/code/chapter-11/Stats/src/glass/stats/StatsService.java
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

liveCard = null;
}
super.onDestroy();

}

Let’s go back and look at the most interesting LiveCard method called here,
setViews(), and the RemoteViews object it receives.

RemoteViews and View Layouts
In the section Live Card Lifecycle on page 4 we discussed the general struc-
ture of how StatsService manages the LiveCard, and how the LiveCard object accepts
RemoteViews. But we glossed over how this object somehow builds a real View.

Creating a RemoteViews object requires some information about the view it will
eventually build. In this chapter, we’re describing how to construct a view
defining an XML Layout.

You can create a RemoteViews in a few ways, but the simplest is to pass in the
package name of the Android project—the package field in the AndroidMani-
fest.xml—and a layout id generated in the R class. The R.layout.stats id represents
an XML-defined layout file that resides in res/layout/stats.xml.

chapter-11/Stats/src/glass/stats/StatsService.java
private RemoteViews remoteViews() {

rv = new RemoteViews(getPackageName(), R.layout.stats);
rv.setTextViewText(R.id.time, StatsUtil.getCurrentTime(this));
rv.setTextViewText(R.id.connected, StatsUtil.getConnectedString(this));
Configuration config = getResources().getConfiguration();
rv.setTextViewText(R.id.language, config.locale.getDisplayLanguage());
rv.setTextViewText(R.id.country, config.locale.getDisplayCountry());
return rv;

}

This is a View that starts with a RelativeLayout that fills the page. Within that
parent view are views: two relative layouts acting as left and right columns,
and a linear layout acting as the Card’s footer bar. Within this layout container
view hierarchy are the elements that render as we saw in Figure 40, Our Live
Card Stats Screen, on page 5.

In the left column is a progress bar containing the current battery’s charge
level, text views for battery voltage and degrees, and a big battery image. The
right column contains the device language, county, and current time, all as
text views. Finally, the footer contains a message about whether the USB
cable is connected, an icon for wifi strength, and a little icon on the left. That
final icon is a helpful Glass UI standard, so that a user can immediately see
what application they’re running, but it’s not required.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg2/code/chapter-11/Stats/src/glass/stats/StatsService.java
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

The following XML is a truncated version of the real stats layout XML, which
can easily be pages long when you start including fields like android:layout_margin-
Left.

interactive/stats.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android">

<RelativeLayout android:id="@+id/left_column">
<ProgressBar android:id="@+id/battery_level"

android:max="100"
android:progress="50"
android:progressDrawable="@drawable/battery_level" />

<TextView android:id="@+id/battery_voltage"/>
<TextView android:id="@+id/battery_degrees"/>
<ImageView android:id="@+id/imageView1"

android:src="@drawable/img_battery" />
</RelativeLayout>
<RelativeLayout android:id="@+id/right_column">

<TextView android:id="@+id/language"
android:textAppearance="?android:attr/textAppearanceMedium" />

<TextView android:id="@+id/country"
android:textAppearance="?android:attr/textAppearanceMedium" />

<TextView
android:id="@+id/time" />

</RelativeLayout>
<LinearLayout android:id="@+id/footer_container"

android:orientation="horizontal">
<TextView android:id="@+id/connected"

android:textAppearance="?android:attr/textAppearanceSmall" />
<ImageView android:id="@+id/wifi_strength"

android:src="@drawable/ic_wifi_1" />
<ImageView android:id="@+id/stats_icon_view"

android:src="@drawable/ic_gear_50" />
</LinearLayout>

</RelativeLayout>

In your Glass settings, you can go to Developer settings and set Show layout
bounds and margins to ON. When our layout is ready to be rendered, it will
display with all of the margins outlined, like the following.

• Click HERE to purchase this book now. discuss

Implementing a Live Card Glassware • 9

http://media.pragprog.com/titles/erpgg2/code/interactive/stats.xml
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

Something to note about about our XML layout is that each element has an
android:id field. The +@id/ prefix informs the Android development tools that it
wants to generate this ID in th R class. This is convenient, so we can easily
reference this layout in our code.

If you refer back to the remoteViews() method at the beginning of this section,
you can see that we repeatedly call a method on the RemoteViews object,
namely setTextViewText, containing a view id like R.id.time, and a value like StatsU-
til.getCurrentTime(this). This is how we populate our LiveCard view with values.

Just like our generated R class in the last chapter, ADT will automatically
generate R.layout.stats to reflect our new layout. Creating our RemoteViews is a
simple matter of pointing it at our app’s package and stats value.

You’ve done your job building the RemoteViews and associated layout data. Now
it’s up to Android and the Glass timeline to put these all together into a real
rendered View when the time is right. We haven’t yet finished populating our
Glassware, but let’s take a break from the RemoteViews for now. There’s an
important action we’ve overlooked.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

