
Extracted from:

Programming Google Glass,
Second Edition

Build Great Glassware Apps with the Mirror API and GDK

This PDF file contains pages extracted from Programming Google Glass, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Google Glass,
Second Edition

Build Great Glassware Apps with the Mirror API and GDK

Eric Redmond

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-18-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—October 22, 2014

http://pragprog.com
rights@pragprog.com

Everything we’ve done so far has been about presenting options to users.
They authorize the app, and we show them cards and present menu items to
them. This chapter is about what users don’t see but they interact with for
a deeper experience. These are back-end services that are affected by changes
in a user’s Glass state.

Back-end services in response to state changes are a common fixture in
software applications. Imagine a case where you might consistently delete
emails from the same address. With the subscription service, your Glassware
can register to receive a notification of any timeline-item deletions. If a user
deletes three emails from a given sender, that address is added to a spam
list, which suppresses further timeline items added for that email address.
Or, if you don’t want your application to be so subtle, you can create a custom
Spam menu item and subscribe to that, allowing users to be a bit more
proactive. We’ll take advantage of this behavior to create our own custom
Lunch Roulette menu item.

With the location service you can get the current and past position of a Glass
device. There are untold uses for geolocation. In our case, we’ll use the latest
location to find restaurants in the local area, and display a real nearby
restaurant on the Lunch Roulette card with the help of Google Places. Just
to show off maps a bit, we’ll also display the location of the restaurant on a
card.

Geolocation
No one likes to be lost. This helps explain why location services are estimated
to be a $10 billion industry in 2015.1 Geolocation in the Mirror API is the act
of learning the location of a Glass device at some latitude/longitude point on
planet Earth.

You application can use that information for all sorts of purposes, from getting
directions to the cheapest fueling station to having the history of a nearby
building projected onto your screen.

Your Glassware receives this information through the Location resource. But
before your code can access a device’s location, it must ask the user for
permission.

1. http://www.pyramidresearch.com/store/Report-Location-Based-Services.htm

• Click HERE to purchase this book now. discuss

http://www.pyramidresearch.com/store/Report-Location-Based-Services.htm
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

OAuth Location Scope
In the previous couple of chapters we glossed over choosing the correct scope
to access resources. Since all of our actions thus far have been on the timeline,
the glass.timeline scope had been sufficient. But to access location resources
only, without using the timeline, you should request the following scope:

https://www.googleapis.com/auth/glass.location

If you looked at the scopes in our AuthUtils code, we can use both scopes.

chapter-05/LunchRoulette/src/test/book/glass/auth/AuthUtils.java
public static final List<String> SCOPES = Arrays.asList(

"https://www.googleapis.com/auth/userinfo.profile",
"https://www.googleapis.com/auth/glass.timeline",
"https://www.googleapis.com/auth/glass.location"

);

Practically speaking, the glass.timeline scope lets your app access a user’s
location. Using both Glass scopes doesn’t hurt if you plan to reference location
as well as the timeline. In fact, you should, since during authorization the
user can see exactly what you’ll be accessing.

One Location
When your application asks Google to track the location of a Glass device,
Mirror provides the positions of the device over time, and assigns an ID to
each location. The interesting bits of a Glass location object are the Glass
device’s latitude, longitude, and accuracy in meters. Like with all Mirror messages,
id and kind will also be populated.

Location is a small but potent object, filled with plenty of information; you
can find a complete listing in Appendix 1, HTTP and HTML Resources, on page
?.

Let’s add a bit of geolocation to Lunch Roulette. To get the device’s most recent
location, pass in a special ID latest. If you want and have to get the ID of a
certain location object, use that ID string instead.

chapter-05/LunchRoulette/src/test/book/glass/LunchRoulette.java
Location location = mirror.locations().get("latest").execute();

double latitude = location.getLatitude();
double longitude = location.getLongitude();

The Java code will generate an HTTP GET request using the ID, and return
a populated JavaScript Object Notation (JSON) body. Here’s an example of
what the latest location may generate.

• 4

• Click HERE to purchase this book now. discuss

https://www.googleapis.com/auth/glass.location
http://media.pragprog.com/titles/erpgg2/code/chapter-05/LunchRoulette/src/test/book/glass/auth/AuthUtils.java
http://media.pragprog.com/titles/erpgg2/code/chapter-05/LunchRoulette/src/test/book/glass/LunchRoulette.java
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

GET /mirror/v1/locations/latest HTTP/1.1
Host: www.googleapis.com
Authorization: Bearer e057d4ea363fbab414a874371da253dba3d713bc

{
"kind": "mirror#location",
"id": "latest",
"timestamp": "2013-09-09T22:12:09.745Z",
"latitude": 45.5142245,
"longitude": -122.6807479,
"accuracy": 49.0

}

You can’t create or update a location yourself (the /locations resource accepts
only GET actions, not POST, PUT, or DELETE). However, you don’t need to,
since Google populates locations for you.

Many Locations
If you want the history of a Glass device’s movement, you can access a list
of previous locations. We won’t access a full list in Lunch Roulette (suggesting
a restaurant near yesterday’s position seems somewhat uncongenial), but it’s
useful to know how.

In Java, executing location.list() returns a LocationsListResponse object. You can get
items via the getItems() method, which returns an iterable List.

locations = service.locations();
LocationsListResponse locList = locations.list().execute();
for (Location loc : locations.getItems()) {

System.out.println(loc);
}

You’ll receive a JSON response with a list of locations (for some reason called
items). Each location will contain an id, which your app could store to later
retrieve a specific location.

GET /mirror/v1/locations HTTP/1.1
Host: www.googleapis.com
Authorization: Bearer e057d4ea363fbab414a874371da253dba3d713bc

{
"kind": "mirror#locationsList",
"items": [
{
"kind": "mirror#location",
"id": "latest",
"timestamp": "2013-09-09T22:22:08.640Z",
"latitude": 45.5142245,
"longitude": -122.6807479,

• Click HERE to purchase this book now. discuss

Geolocation • 5

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

"accuracy": 49.0
}

]
}

Glass sends a location update every 10 minutes, so you may notice that
location timestamps are about that length apart. The 10-minute window is
a value built into the Glass device’s software. Since there’s no guarantee that
a user hasn’t modified her Glass in some way, or that she even has consistent
Internet access, you can’t ever count on an even 10-minute spread. Google
prunes this list every so often, so you shouldn’t have to worry about receiving
too many items.

Using Location
With a location in hand, we can optionally display the location in a map by
using a glass://map path, or provide a menu option to get directions from where
a user currently is to a destination. The next two sections are examples of
what you can do with a Glass’s location. There are innumerably more.

Navigating to a Location
Now that you have the location of your Glass user, why not expand Lunch
Roulette a bit? Rather than presenting the user with a random cuisine, you
can use her location along with a map service like Yelp or Google Places to
present the local restaurants.

The code necessary to search Google Places for a nearby cuisine is wrapped
up into a PlaceUtils class as part of the book’s downloadable code. The getRandom()
method chooses a random restaurant by searching for a nearby cuisine at a
given latitude and longitude location.

You’ll need to activate the Places API on your Google console.2 This is in the
same API console where you activated the Mirror API in Chapter 2, The Google
App Engine PaaS, on page ?.3 Then click on API Access and find the API key
under Simple API Access. Set the AuthUtils.API_KEY constant in your Java code
to that key.

chapter-05/LunchRoulette/src/test/book/glass/LunchRoulette.java
// get a nearby restaurant from Google Places
Place restaurant = getRandomRestaurant(latitude, longitude);
// create a timeline item with restaurant information
TimelineItem timelineItem = new TimelineItem()

2. https://developers.google.com/places/documentation/
3. https://code.google.com/apis/console/

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/erpgg2/code/chapter-05/LunchRoulette/src/test/book/glass/LunchRoulette.java
https://developers.google.com/places/documentation/
https://code.google.com/apis/console/
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

.setHtml(render(ctx, "glass/restaurant.ftl", restaurant))

.setTitle("Lunch Roulette")

.setMenuItems(new LinkedList<MenuItem>())

.setLocation(
new Location()
.setLatitude(restaurant.getLatitude())
.setLongitude(restaurant.getLongitude())
.setAddress(restaurant.getAddress())
.setDisplayName(restaurant.getName())
.setKind(restaurant.getKind()));

// Add the NAVIGATE menu item
timelineItem.getMenuItems().add(

new MenuItem().setAction("NAVIGATE")
);
// get a nearby restaurant from Google Places
Place restaurant = getRandomRestaurant(latitude, longitude);
// create a timeline item with restaurant information
TimelineItem timelineItem = new TimelineItem()

.setHtml(render(ctx, "glass/restaurant.ftl", restaurant))

.setTitle("Lunch Roulette")

.setMenuItems(new LinkedList<MenuItem>())

.setLocation(
new Location()
.setLatitude(restaurant.getLatitude())
.setLongitude(restaurant.getLongitude())
.setAddress(restaurant.getAddress())
.setDisplayName(restaurant.getName())
.setKind(restaurant.getKind()));

// Add the NAVIGATE menu item
timelineItem.getMenuItems().add(

new MenuItem().setAction("NAVIGATE")
);

Using the restaurant object, you can populate HTML with a real restaurant
name and address. Better yet, you can let users add a NAVIGATE menu-item
action, which renders a Get Directions menu item like in the following figure.

• Click HERE to purchase this book now. discuss

Using Location • 7

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

Figure 19—Getting directions

Tapping on the new Get Directions menu item will bring up a map to the
restaurant, as you can see in the figure here..

Figure 20—Navigation shows a map.

But the map displayed is that of a default map application that takes over
your card. If you want to show a more customized map as part of a card, you
can embed a map resource.

Showing Your Own Map
Since Glass is primarily a visual device, displaying information is always
better than describing it. Let’s enhance the Lunch Roulette timeline item to
flag the chosen eatery on a map, presenting it to the user on half of the card,
with the restaurant name on the other half.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

The map parameters are a subset of Google’s Static Maps API.4 Width and
height (w and h) are required params, and at least one of the following is
required: center and zoom, marker, and polyline. You can read more details about
these parameters in Appendix 1, HTTP and HTML Resources, on page ?.

But rather than calling the static map image–generating HTTP URL (for
instance, http://maps.googleapis.com/maps/api/staticmap), we call the map action of
the Glass protocol, which starts with glass://map. This allows Glass to natively
generate the map rather than relying on the Google Maps API to transport a
map image.

The cool part is that we can add a map simply by adding it to our template
file. No code change is necessary, since we designed the Place class (restaurant
object) to have a getter and a setter for latitude and longitude.

chapter-05/LunchRoulette/war/WEB-INF/views/glass/restaurant-map.ftl
<article>
<figure>

<img src="glass://map?w=240&h=360&marker=0;${latitude},${longitude}&marker=1"
width="240"
height="360"/>

</figure>
<section>

<h2 class="yellow">${ name }</h2>
${ address }

</section>
</article>

When you rerun the project, you should notice a dramatic change on your
Glassware card (see Figure 21, Displaying a map alongside a restaurant, on
page 10). No longer are we stuck with plain text, or slightly less-plain HTML.

Now we have can display our own maps! This, along with the NAVIGATE
menu item and Location resource, lets us visualize or navigate to and from
any location, the two the most common uses of a map.

4. https://developers.google.com/maps/documentation/staticmaps/

• Click HERE to purchase this book now. discuss

Using Location • 9

http://media.pragprog.com/titles/erpgg2/code/chapter-05/LunchRoulette/war/WEB-INF/views/glass/restaurant-map.ftl
https://developers.google.com/maps/documentation/staticmaps/
http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

Figure 21—Displaying a map alongside a restaurant

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/erpgg2
http://forums.pragprog.com/forums/erpgg2

