Extracted from:

Swift Style

An Opinionated Guide to an Opinionated Language

This PDF file contains pages extracted from Swift Style, published by the Pragmatic
Bookshelf. For more information or to purchase a paperback or PDF copy, please
visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ema‘u’c
Ogramimers

Swiflg 1.

An Opinionated Guide
to an Opinionated Language

Erica Sadun
edited by Brian MacDonald

Swift Style

An Opinionated Guide to an Opinionated Language

Erica Sadun

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian MacDonald
Indexing: Potomac Indexing, LLC

Copy Editor: Linda Recktenwald

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-235-0

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Evaluating Case-Binding Syntax

Swift case binding is one of the least straightforward components of the entire
language. Case binding enables you to match an enumeration case and then
bind that case’s associated values to new constants and variables. Where you
place those let and var keywords to bind case values involves nontrivial
choices.

Safety and consistency play important roles in these decisions. You must
choose whether to favor readability or error prevention, even though the
likelihood of errors is quite small.

This section explores two distinct styles—external and internal case bind-
ing—and details the advantages of each. I recommend you adopt a consistent
internal style, which was not my practice prior to writing this book. In
researching this topic, I learned that you can safely navigate a variety of pitfalls
by preferring this less-attractive but more-reliable style.

External Case Binding

External case binding places a single let or var keyword outside the enumeration
case. By moving keywords out of their tuples, you combine binding into a
single additional keyword. The results use fewer characters and create a
simpler syntax. Here are some examples that showcase both approaches:

enum StatusCode {
case status(code: Int, message: String)
case error(Error)

}

let fetch: StatusCode =
.status(code: 418, message: "I'm a teapot")

if case .status(let code, let message) = fetch { // more words
print(code, message) // 418 I'm a teapot

}

if case let .status(code, message) = fetch { // fewer words
print(code, message) // 418 I'm a teapot

}

The external version also limits clutter. It produces a consistent code style
for every binding, whether or not you ignore individual values. These next
examples demonstrate the uniform presentation of prefixed let/var keywords.
The style is uncomplicated and won’t change based on the number of associ-
ated values or bound symbols:

enum Value<T> { case one(T), two(T, T), three(T, T, T) }

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

°8

let examplel: Value<Character> = .one("a")
let example2: Value<Character> = .two("a", "b")
let example3: Value<Character> = .three("a", "b", "c")

if case let .one(a) = examplel {}

if case let .two(a, _) = example2 {}
if case let .two(a, b) = example2 {}
if case let .two(_, b) = example2 {}
if case let .three(

if case let .three(_, b, c)
if case let .three(_

example3 {}
example3 {}
example3 {}

Q
o T
(@]
-
1]

0
-
U}

Internal Case Binding

Internal case binding is not as pretty or consistent as its external alternative,
but I've come around to adopting this style. The internal approach involves
extra syntax for each bound symbol. Regardless, it is safer. Consistent
internal binding, as in the following example, avoids errors introduced by a
variety of uncommon edge cases:

if case .three(let a, let b, let c) = example3 {}

When pattern matching, it's common to bind a variable or constant and
uncommon to use a bound value as an argument. Despite this rarity, adopting
an “always explicit, always within the parentheses” rule adds consistency
and safety to your code. The following example showcases an always-internal
binding style used with an externally bound symbol. Under this style, binding
is limited to each keyword’s site. The oldValue constant will not be changed by
the if-case statement:

let oldvalue = "x"

// This safely binds and simultaneously matches.
if case .two(let newValue, oldValue) = example2 {

}

Consistent in-place binding avoids the accidental shadowing demonstrated
in the following example. Overbinding shadow errors cannot happen when
you adopt universal internal binding:

// This is an error because the intent is

// to bind newValue and match oldValue

if case let .two(newValue, oldValue) = example2 {
// Wrongly matches "a", "b".
//
// ‘oldValue' is shadowed here, assigned the
// value from the second field of the
// enumeration's associated values.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

Evaluating Case-Binding Syntax ¢ 9

. use newValue ...

}

Admittedly, this is an outlier case. Pattern matching rarely uses already-
bound values. If you've adopted an external binding style, you can express
this situation with a separate and explicit where or comma-delimited condition
clause, as in the following example. This code introduces additional syntax
and adds an extra variable binding (currentValue):

// This implements pattern binding and matching

// the given value but the extra condition separates
// these into two distinct goals

if case let .two(newValue, currentValue) = example2,

currentValue == oldValue
{
// correctly won't match "a", b"
. use newValue ...
}

Even here, safety can be problematic. If you inadvertently pass a wrong value
to the condition clause, you'll introduce a hard-to-find error. In the following
code, I've accidentally typed newValue when I meant to type oldValue. This code will
compile but its logic is flawed. Consistent internal binding avoids this error, too.

// This error (newValue' instead of ‘oldValue') will not
// be caught by the compiler and is hard to catch by

// inspection.

if case let .two(newValue, currentValue) = example2,

currentValue == newValue
{
// correctly won't match "a", b"
. use newValue ...
}

Internal binding can be easier for new language adopters to read. Even without
binding, if case is confusing. Both if case let and if case var (plus case var and case
let) may look like single compound keywords rather than a combination of
two distinct actions to developers unfamiliar with this syntax.

There’s one final reason to adopt always-internal binding. When you need to
mix let and var binding, you must use internal binding. This example shows
how that might look in your code:

if case .three(_, let b, var c) = example3 {}

¢ Prefer consistent internal let and var binding. It's safe and simple.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

°10

e There is but one let to rule them all and in the Swiftness bind them. Use that one
let internally and generously.

Ignoring Associated Values

Don't ignore the full complement of an enumeration case’s associated values.
Prefer to match cases instead. When you want to match only on the case,
omit wildcard patterns and mention only the enumeration case. This allows
you to ignore the content and structure of the payload and focus strictly on
the enumerated conditions provided by the type:

switch statusCode {

case .error(_): // no
case .status(_, _): // extra no
}

switch statusCode {
case .error: // yes

case .status: // yes

}
Using If/Guard-Case

Both if-case and guard-case are most valuable when used to bind associated
values to variables. They allow you to reach inside an enumeration and access
those values based on an enumeration’s specific cases:

enum Result<T> { case success(T), error(Error) }

guard case .success(let value) = result else { return } // yes
print(value)

When pattern matching, prefer the ~= operator to if-case and guard-case. The
following statements perform identical tests, checking whether myValue falls
within a range:

if range ~= myValue { print("success") } // yes
if case range = myValue { print("success") } // no

Of these, the first is readable and simple. The second, while logically identical,
is esoteric and hard to process. Using the equal sign when there’s no
assignment or condition binding promotes confusion for most Swift developers,
even those experienced with pattern-matching syntax.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

Choosing Capture Modifiers ® 11

While coders can be trained to recognize this rare use, you cannot be sure
that anyone reading your code will have that training. This rule falls under
the mantle of Brian Kernighan’s admonition against writing clever code.'®
Prefer the obvious to the obscure, no matter how cool you consider the
alternative to be.

¢ Reserve if-case and guard-case to bind variables.
¢ Prefer ~= for non-binding pattern matching.

¢ "Too clever is dumb."—Ogden Nash

Choosing Capture Modifiers

Prefer weak capture to unowned. Weak captures can be checked at the start of
a closure and, if still valid, assigned to a strong reference for the life of the
enclosing scope. They provide excellent safety and utility.

13. https://en.wikiquote.org/wiki/Brian_Kernighan

« Click HERE to purchase this book now. discuss

https://en.wikiquote.org/wiki/Brian_Kernighan
http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

°12

An unowned capture is equivalent to Objective-C’s unsafe-unretained; it can be
used when “the closure and the instance it captures will always refer to each
other, and will always be deallocated at the same time.” You may use unowned
items to refer to global instances whose lifetime extends throughout the
application’s duration.

An unowned reference guarantees that a reference always has a value. If there
is any chance whatsoever that the unowned item may deallocate, using
unowned items is roughly equivalent to and as desirable as using a weak
value with forced unwrapping. The advantage—if that’s the right word to
use—is that an unowned reference is not an optional value and can be used
without further unwrapping.

When capturing weak self in a closure, prefer to create a strong reference at
the start of the closure rather than prefix all calls with self?.member optional
chaining. Introducing an early strong reference ensures that self cannot
deallocate throughout the lifetime of the closure’s scope.

[weak self] in

guard let strongSelf = self // yes
else { ... leave scope ... }

strongSelf.f()

strongSelf.g()

[weak self] in
self?.f() // no
self?.g()
self?.h()

e weak capture is generally safer than unowned capture.

e If you must use unowned, reserve unowned capture for items with guaranteed lifetimes.

While singletons can be seen as good candidates for unowned capture, since their
existence is guaranteed throughout the lifetime of the program, there are no real
worries about deallocation. A strong reference may be simpler to use.

e Capturing a weak version of self ensures you won’t create reference cycles in your
code that prevent memory from properly deallocating.

e Some developers prefer to use this in preference to strongSelf. (I feel that strongSelf is
better at self-documenting.) The arguments in favor of this are similarity in length
(this is the same number of letters as self) and it has a historic meaning similar to
self in other languages.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

Other Practices ® 13

Other Practices

Here are some handy ways to help optimize and improve your code:

e Prefer let constants to var variables unless you truly need mutable data.
The compiler can better optimize your data when it’'s guaranteed not to
change. The Swift compiler is very good at detecting unmodified var use.

e Marking classes as final enables the compiler to introduce performance
improvements. These improvements depend on moving away from
dynamic dispatch, which requires a runtime decision to select which
implementations to call. Removing indirect calls for methods and property
access greatly improves your code performance.

e Swift’s whole-module optimization can automatically infer many final
declarations by scanning and compiling an entire module at once. Its
inference capabilities apply only to constructs and members marked as
internal, fileprivate, and private. Class members with public access must
explicitly declare final to participate in this optimization.

¢ Avoid escaping closure arguments unless they must outlive your functions.
Using nonescaping closures (the default) introduces performance optimiza-
tions and bypasses the need to annotate properties and methods with self.

¢ Default arguments involve a minor check with a small overhead cost. Unless
you plan to run tens of millions of calls at once, don't let this overhead
sway you away from providing defaults. Using default values, even for clo-
sure arguments, involves minimal overhead and significant usability gains.

e Avoid complex string interpolation that performs too much work within
the \() interpolation delimiter. This is best broken out into separate state-
ments to improve readability and maintainability.

Appending

Prefer append() and append(contentsOf:) to using the + operator when concatenating
elements and arrays in situations where performance matters. This enables
the Swift compiler to better optimize your code:

var results: [Iterator.Element] = [] // yes
results.reserveCapacity(rest.count + 2)
results.append(self[first]); results.append(self[second])
results.append(contentsOf: rest.lazy.map({ self[$0] }))

return [self[idx1], self[idx2]] // non-performant
+ rest.lazy.map({ self[$0] })

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

There’s no reason to avoid += since it calls append(contentsOf:) in its implementation.

Counting

Don't test a collection’s count property. Prefer checking isEmpty over count == 0.
The isEmpty property returns a Boolean value indicating whether the collection
contains no elements. It operates in O(1) time in most (but not all) cases. The
standard library recommends using isEmpty over testing count, especially for
computed and potentially infinite sequences, which is where count can be
particularly expensive.

isEmpty is not always O(1). A lazy filter with no matches must run through its
entire sequence before determining isEmpty (which is O(N) complexity). isEmpty
should be O(1) for all non-lazy collections and for many lazy collections too,
such as lazy maps.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift

