
Extracted from:

Swift Style
An Opinionated Guide to an Opinionated Language

This PDF file contains pages extracted from Swift Style, published by the Pragmatic
Bookshelf. For more information or to purchase a paperback or PDF copy, please

visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com




Swift Style
An Opinionated Guide to an Opinionated Language

Erica Sadun

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian MacDonald
Indexing: Potomac Indexing, LLC
Copy Editor: Linda Recktenwald
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-235-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Placing Attributes

Placing attributes like @objc, @testable, @available, and @discardableResult on their
own lines before a member declaration has become a widely adopted Swift style:

@objc(objectAtIndex:) // yes
internal func objectAt(_ index: Int) -> AnyObject {

@available(*, unavailable, renamed: "Iterator") // yes
public typealias Generator = Iterator

@discardableResult // yes
func _copyContents(initializing ptr:

UnsafeMutablePointer<Iterator.Element>)
-> UnsafeMutablePointer<Iterator.Element>

This approach limits horizontal declaration length. It allows a member to float
below its attribute and supports flush-left access modifiers, so internal, public,
and the like appear in the leftmost column.

Many developers mix and match styles for short Swift attributes like @objc.
It’s common to see @objc(countByEnumeratingWithState:objects:count:) on its own line,
while @objc moves down to the primary declaration, particularly for short
single-line declarations:

@objc internal var count: Int // yes

@objc internal final class _SwiftDeferredNSArray
: _SwiftNativeNSArrayWithContiguousStorage // okay

Some prefer to break attributes out universally, regardless of length. This
approach is consistent, and it promotes consistent leftmost access modifiers:

@objc // okay
internal var count: Int

@objc // okay
internal final class _SwiftDeferredNSArray

: _SwiftNativeNSArrayWithContiguousStorage

• Most Swift coders prefer to lead with easily identified access keywords.

• It’s okay to move attributes to their own lines, even short attributes.

Formatting Number Literals
Two Swift conventions allow you to enhance number legibility, or how clearly
numbers in your code can be read, understood, and checked for correctness.

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift


Swift enables you to introduce both underscore separators and leading zeros.
This formatting enhances legibility by reducing the cognitive load involved in
inspecting numbers. Consistent formatting chunks long numbers into more
manageable visual components. Adopting these simple visual flourishes offers
a significant legibility win. They don’t interfere with the compilation or execu-
tion of your code. At the same time, they present numbers in a more human-
consumable fashion.

Adding Underscores
Swift ignores single underscores placed within number literals. Adding
underscores enables you to break down number literals into more manageable
components. If you adopt this style, limit underscores to figures containing
four or more consecutive digits for decimal and hexadecimal numbers.

For decimal integers, place an underscore every three digits moving left from
the decimal point:

let largeInteger = 1_732_500 // easily reviewed
let largeInteger = 1732500 // harder to inspect

With hex integers, place underscores every two digits:

let largeInteger = 0xff_ff_ff // easily reviewed
let largeInteger = 0xffffff // 5 f's or 6?

Binary and octal integer formatting should reflect some kind of underlying byte
pattern without sacrificing readability. Moving beyond four-place underscores
eliminates nearly all the advantages introduced by literal formatting:

let b1 = 0b01110001_10011111 // bytewise but hard to read
let b2 = 0b0111_0001_1001_1111 // nybblewise, more readable
let o1 = 0o7124_3226 // okay, bytewise
let o2 = 0o71_24_32_26 // okay, nybblewise

Prefer two- or four-place spacing, even if the results do not correspond to a
meaningful byte chunk. It’s okay to aggregate four bits at a time for the sake
of readability.

It’s less common (but no less valuable) to add underscores to fractional decimal
values. Adding underscores supports comprehension and reduces the mental
burden associated with inspecting values for correctness, whether the number
lies to the left or right of the decimal point.

let millionth = 0.000001 // harder to inspect
let millionth = 0.000_001 // more easily reviewed

• 8

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift


Although Swift allows you to insert underscores haphazardly, avoid doing so.
Adhering to the standard “by threes” and “by twos” conventions adds utility.
Inserting random underscores just makes your code look silly.

let test1 = 1_0_0_1 // no
let test2 = 1_0_0__1 // especially no
let test3 = 0118_999_881_99_9119_725 // very very no

There’s one exception to the “only use decimal/hex chunking” rule. When
working with number literals that represent structured information such as
social security numbers or phone numbers, it is occasionally acceptable (“But,
oh god, never ever do this, please!”) to use nonstandard chunking.

let social = 045_68_4425
let phone = 202_456_1111 // US style

Strings are almost always a better solution unless you have a more structured
value type that breaks items into shorter subcomponents. Remember, half
of phone numbers overflow 32-bit integers.

• Use three-place underscore chunking for decimal numbers.

• Use two-place underscore chunking for hex numbers.

• Weigh 8-bit byte-at-a-time vs. 4-bit nybble-at-a-time layout for octal and binary
numbers.

• Avoid structured-information chunking for number literals that may overflow
32-bit platforms.

Using Zero Padding
Both integer and floating-point literals can be padded with extra zeros to allow
column presentation or to adhere to well-defined number formatting. Swift
ignores excess leading and trailing zeros when interpreting number literals:

let value1 = 005.0300
let value2 = 123.0000
let value3 = 000.0520
let value4 = 010.1621

Using zero padding is a “do no harm” flourish, which you’re welcome to adopt
or ignore per your personal style. I’ve never bothered using this style, but it’s
there if you need it.

• Click  HERE  to purchase this book now.  discuss

Formatting Number Literals • 9

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift


Regularizing Decimal Extent
Avoid code that uses different decimal extents for similar typed arguments.
Doing this catches the reader’s eye for the wrong reasons. There is no
semantic difference here between alpha and red. Their number literals should
not imply otherwise.

let color = Color(red: 0.0, green: 0.5, blue: 0.5, alpha: 1.0000) // no
let color = Color(red: 0.0, green: 0.5, blue: 0.5, alpha: 1.0) // yes

Some house rules mix and match decimals and floating-point numbers based
on their expected role. For example, you might mandate integer literals for
coordinates (CGPoint(x: 0, y: 0)) and floating-point literals for colors (UIColor(red: 1.0,
green: 0.0, blue: 0.0, alpha: 1.0)). Even though both APIs use decimal values, the
former are expected to be whole numbers that lie at exact pixel points and
the latter to be levels ranging from 0.0 to 1.0.

Avoid mix-and-match argument styles at a single call site. Pick one literal
style or the other for each use case and don’t cross the streams. In the follow-
ing example, there’s no semantic distinction between the (x, y) origin and the
(width, height) extent. Both refer to screen points (in the measurement
meaning, not the location meaning) and both are expected to use round values.
Using different styles for identical roles doesn’t make any sense.

let frame = CGRect(x: 0, y: 0, width: 400.0, height: 300.0) // no

Mixed styles call the wrong kind of attention to themselves and draw the eye
during code review. They make readers wonder whether portions of a number
have been omitted intentionally or deleted by accident: “Did 0 mean 0.0 or
0.2?” Rather than explaining yourself by adding unneeded comments, apply
consistent literals to same-type arguments at each call.

That said, many Swift coders prefer to omit fractions for whole numbers.
When used consistently, there’s no question of whether you meant to use a
whole number or not:

let red = UIColor(red: 1, green: 0.231, blue: 0.65, alpha: 1) // your call

• 10

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/esswift
http://forums.pragprog.com/forums/esswift



