
Extracted from:

Swift Style, Second Edition
An Opinionated Guide to an Opinionated Language

This PDF file contains pages extracted from Swift Style, Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Swift Style, Second Edition
An Opinionated Guide to an Opinionated Language

Erica Sadun

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

Swift and the Swift Logo are trademarks of Apple, Inc. and are used by permission. Swift
Style, Second Edition: An Opinionated Guide to an Opinionated Language is an independent
publication and has not been authorized, sponsored, or otherwise approved by Apple, Inc.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Brian MacDonald
Copy Editor: Nicole Abramowitz

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-627-3
Book version: P1.0—March 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

This book is dedicated to the Swift community
both inside and outside Apple.

Improving Closure Hygiene
Closures start with an optional capture list followed by an optional signature
declaration that concludes with the in keyword. It’s followed by statements
that form the closure’s body. Closures expressions may include any or all of
the following components:

{
[capture-list] (parameters and their types) throws -> result-type in
statements

}

Add declaration elements reluctantly, preferring to include just those items
required to make your closure compile and function properly. Any element
that can be inferred often should be inferred. After that, follow your in-house
standards regarding additional declaration items. Most Swift developers omit
return and parameter types where allowed. A short signature is generally
both readable and useful. If you cannot entirely omit a parameter in a closure
signature, replace it with _.

Weighing Shorthand Argument Names
Shorthand argument names are a semantic convenience that Swift provides
to closures. Instead of providing a complete argument signature, as you would
with a function or method, you can refer to parameters positionally—for
example, $0, $1, and so on. When used within a closure, you can omit a fully
specified argument list. The arguments are inferred from the closure’s
expected function type.

Limit shorthand argument names to the simplest closures, such as those
used when mapping, filtering, and sorting, especially in one-line function
chains. In these cases, focus on the call (for example, < in { $0 < $1 }) rather
than on the arguments being passed to that call.

When the argument counts match the function signature, you can pass an
operator (<) or function name (min, power2) instead of a closure:

// `min`
[(0, 1), (3, 2), (5, 9)].map({ min($0, $1) }) // [0, 2, 5], okay
[(0, 1), (3, 2), (5, 9)].map(min) // [0, 2, 5], better

// `<`
[(0, 1), (3, 2), (5, 9)].map({ $0 < $1 }) // [true, false, true], okay
[(0, 1), (3, 2), (5, 9)].map(<) // [true, false, true], better

// `*`
func power2(_ exponent: UInt) -> Int {

guard exponent > 0 else { return 1 }

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

return Array(repeating: 2, count: Int(exponent))
.reduce(1, *)

}

// `power2`
[1, 3, 5, 7].map(power2) // [2, 8, 32, 128]

Mapping a named function allows you to focus on the meaning of the mapped
item rather than the details of its implementation. Prefer well-named functions.
When you’re going to use the same functionality in several places, build a
function if one is not already available. Don’t create special-purpose, single-
use functions to avoid mapped closures unless there is a measurable gain in
doing so.

When your closure extends beyond a line or two, establish argument names
just as you would in a standard function or method declaration. Names ensure
you won’t perform mental gymnastics trying to remember what roles $0 and
$1 correspond to. This issue always pops up for me when using reduce. I can
never remember whether the partial result is $0 or $1. Adhering to this rule
promotes recognition over recall in your code design. Names allow code
maintainers to recognize each parameter in context. It’s easier to know what
to do with a name or address than a $0 or a $1, requiring a much lower cognitive
burden than recall.

• Reserve closure shorthand for short and simple elements.

• Prefer to name arguments for nontrivial implementations.

• Naming arguments emphasizes recognition above recall.

• Use $0 when your parameter names are worthless.

Indenting Closures
There’s not much to say about indenting closures, as most IDEs will handle
this matter on your behalf. Ideally, you want to indent a closure’s closing
brace to the same level as the line that started it unless the closure can be
trivially shown as a single line. This rule also applies to array and dictionary
literals.

// Assignment
let isEven = { (value: Int) -> Bool in // yes

return value % 2 == 0
}

// Trailing
return sequence.filter { value in // yes

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

value % 2 == 0
}

// Functional
return sequence.filter({ value in // yes

value % 2 == 0
})

// One liner
return sequence.filter({ $0 % 2 == 0 }) // yes

Trimming Closure Declarations
Where Swift permits, limit a declaration to parameter names, or omit the
signature entirely (especially in () -> Void closures). Adding unneeded elements
to your signatures clutters your code and cuts down on readability. Consider
the following closure. Nearly every signature element in this example can be
safely omitted.

{ (index: Index) -> Void in // no
...

}

{
(index: Index) -> Void in // no
...

}

Refactoring the signature to index in provides an excellent compromise between
practicality and concision. Named parameters enhance code readability,
providing symbolic roles for each argument.

{ index in // yes
...

}

{
index in // yes
...

}

Weighing Colinear in
Many 1TBS adherents place signature declarations on the same line as the
closure’s opening brace. This works best when closure declarations are short.
It’s a style I commit to when working with partially applied (also called curried)
methods, as in the following example:

public static func convolve(kernel: [Int16])
-> (_ image: UIImage, _ divisor: Int32)
-> UIImage? {

• Click HERE to purchase this book now. discuss

Improving Closure Hygiene • 9

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

return { image, divisor in // same-line declaration
...

By moving declarations from the 1TBS opening brace to the following line,
you mitigate over-long lines. Although less compact, this approach aligns a
closure signature with the code that follows. Consider these examples:

data.withUnsafeMutableBytes {
(bytePtr: UnsafeMutablePointer<Int8>) in
buffer.data = UnsafeMutableRawPointer(mutating: bytePtr)

}

let _ = array.withUnsafeMutableBufferPointer({
(arrayPtr: inout UnsafeMutableBufferPointer<Int16>) in
source.copyBytes(to: arrayPtr)

})

Placing declarations on their own lines establishes a code “column.” You read
progressively, starting with the declaration and moving through each line of
implementation. This style is closer to the way you implement functions and
methods, where the signature is normally toward the left, either by nature or
wrapping, and depending on the degree of generics involved.

Avoid breaking down the in line further unless the closure signature is notably
long and complex. In such cases, mimic the signature layout you’d use in a
normal function, even when you’re placing that layout in the first lines of a
closure.

Very few Swift developers move in to its own line, separating the closure sig-
nature from its implementation. The one-line in creates a vertical space
between the two:

// Not great
let _ = array.withUnsafeMutableBufferPointer({

(arrayPtr: inout UnsafeMutableBufferPointer<Int16>)
in
source.copyBytes(to: arrayPtr)

})

This style is rare and unconventional even if it serves a meaningful purpose.
When necessary, I prefer to separate closure declarations from their bodies
more conventionally, with a blank line.

• Embrace closure argument sugar. Prefer the concision of image, divisor in to (image:
UIImage, divisor: CGFloat) -> UIImage.

• Focus on line length when deciding whether to place the closure signature on the
same line as the opening brace or to move it to the following line.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

• Prefer colinear in to single-line in. Single-line in is ugly.

• In nested scopes, group the closure declarations with the opening brace.

• Placing closure declarations on their own line can mirror the relationship between
declaration and code in functions and methods.

Returning from Single-Line Closures
Some developers prefer to return from single-line closures. Some don’t. Swift’s
syntactic shorthand enables you to evaluate and return single expressions
with or without the return keyword:

/// Return the result of performing `c` on arguments `b` and `c`
func perform(a: Int, b: Int, c: (Int, Int) -> Int) -> Int {

return c(a, b)
}

// Called with function argument
perform(a: 1, b: 2, c: +) // yes

// Trailing closure with inferred return
perform(a: 1, b: 2) { // yes

Int(pow(Double($0), Double($1)))
}

// Trailing closure with express return
perform(a: 1, b: 2) { // yes

return Int(pow(Double($0), Double($1)))
}

There’s no real harm when including return; there’s no real point to it either.
Some developers prefer inferred returns for functional chains and explicit
returns for procedural calls.

• Swift code should be haikus, not epic poetry.

• Trim your code to the minimum necessary to support compilation, readability,
and expression of your intent.

• As with all the advice in this book, establish your house style and adhere to it.

Incorporating Autoclosure
Swift autoclosures enable you to automatically wrap an expression into a
closure for evaluation when passing the expression as an argument to a
function. Its syntactic sugar enables you to omit functional braces.

• Click HERE to purchase this book now. discuss

Improving Closure Hygiene • 11

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

func unless(_ condition: Bool, do action: () -> Void) {
guard !test else { return }
action()

}
unless(count < 10) { print("Done") }

Prefer to reserve autoclosure for lazy evaluation when short-circuiting
expressions (for example, when performing &&):

public static func &&(lhs: Bool,
rhs: @autoclosure () throws -> Bool) rethrows -> Bool

Autoclosure parameters are neither required nor recommended for beautifi-
cation or convenience. Autoclosure should not be motivated by omitting ugly
braces when passing an expression to a function parameter. Use autoclosures
rarely and with great hesitation. Outside of known, system-supplied functions,
autoclosures may be misinterpreted. Their deferred execution may be over-
looked when reading code. If you must use autoclosure elements, label them
carefully.

Apple offers the following autoclosure guidance in The Swift Programming Language:

• Use autoclosure carefully because there’s no caller-side indication that argument
evaluation is deferred (or may not ever be called at all).

• The context and function name should make it clear that evaluation is
being deferred.

• Autoclosures are intentionally limited to take empty argument lists.

• Avoid autoclosures in any circumstance that feels like control flow.

• Incorporate autoclosures to provide useful semantics that people would expect
(for example, a futures or promises API).

• Don’t use autoclosures to optimize out closure braces.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

