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This book is dedicated to the Swift community
both inside and outside Apple.



Selecting Colon Styles
The Ash Rule (named for developer luminary Mike Ash) adopts left-hugging
colons in all uses except operator declarations and ternary forms. His rule
applies to dictionary references, protocols, and so forth:

let dict = ["a": 1, "b": 2] // Ash Rule
let dict = ["a" : 1, "b" : 2] // Commonly used

Here are a few examples of magnetic-left (that is, left-hugging) colons in
common use cases:

let x: [String: String] = ["key": "value"]
let y = foo(param1: value1, param2: value2)
func bar<T: Hashable>(a: T) -> Void {}

Moving to this style felt odd for a while, but I’ve now grown used to it. This
approach is consistent and prioritizes the role of the left item. It is, in my
opinion, quite readable. Compare and contrast with my prior style, which I
call the Full Monty spacing approach:

let x : [String : String] = ["key" : "value"]
let y = foo(param1 : value1, param2 : value2)
func bar<T : Hashable>(a : T) -> Void {}

The Ash Rule puts you in step with more than half of Apple source code and
out of step with the rest. Colon magnetism tends to vary by group, but it is
growing as a trend.

Some people use magnetic left except for protocol conformance and inheritance
clauses. Adding spaces before colons elevates prominence. For example, in
extension AnyHashable : Equatable, the spacing makes colons stand out more. In
theory, this enables readers to better identify the colon’s use point.

Here’s an old example from Swift’s source code that showcases this style
before this type moved to magnetic-left style. Notice the Full Monty spacing
for the generic type parameter and protocol conformance:

public struct EnumeratedIterator<
Base : IteratorProtocol

> : IteratorProtocol, Sequence {
internal var _base: Base
internal var _count: Int

The current implementation updates both wrapping and colon use. (It also
drops conformance to IteratorProtocol and Sequence.) I think it’s easier to read
now:

public struct EnumeratedIterator<Base: IteratorProtocol> {
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internal var _base: Base
internal var _count: Int

Apple Developer Publications uses magnetic-left colons. (See this tweet,3 for
example.) This style is simple and readable:

class SimpleClass: ExampleProtocol {
var simpleDescription: String = "A very simple class."
var anotherProperty: Int = 69105
func adjust() {

simpleDescription += " Now 100% adjusted."
}

}

Skip left-hugging colons in ternary expressions because they unnaturally
prioritize the left value over the right:

let result = booleanCondition ? value1: value2 // no
let result = booleanCondition ? value1 : value2 // yes

In operator declarations, conjoined colons aren’t legal. They confuse the
compiler because Swift assumes the colon is part of the operator name:

infix operator &&: LogicalConjunctionPrecedence // no
infix operator && : LogicalConjunctionPrecedence // yes

Common Colon Styles
When it comes to colon style, there aren’t any naturally right or wrong
answers. Styles break down into the following common categories:

Label declarations
func f(x: T), f(x y: T)

Most commonly magnetic left.

Constant and variable typing
let x: T

Most commonly magnetic left.

Dictionary declarations
[key: value]

Consensus is split between full spacing and magnetic left with magnetic
left becoming prevalent.

Empty dictionaries
[:] and not [: ]

3. https://twitter.com/_jackhl/status/646723367576276992
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Universal consensus: no spaces.

Cases
case a:, case a, b:

Universal consensus: magnetic left.

Attribute
@attribute(key: value)—for example, @available(*, unavailable, renamed: “MyRenamed”)
@available(swift, deprecated: 4.1, obsoleted: 5.0.0, renamed: "copyMemory(from:byteCount:)")

Consensus: magnetic left.

Inheritance
Derived: Parent

Consensus is split between full spacing and magnetic left, with magnetic
left becoming increasingly more common.

Conformance
<T: A>, <T: A & B>

Consensus is split between full spacing and magnetic left, with magnetic
left becoming increasingly more common.

Operator conformance
public func <= <T>...

Add a space between the operator symbol and its generic declaration.

Ternary
A ? B : C

Always use fully spaced ternary expressions.

Some coders blaspheme and use no spaces at all between labels and argument
values. Although this offers a slight advantage (Xcode wraps the two together
on long lines), it’s an uncommon style and possibly a sin of commission.

unsafeBitCast(type, to: Int.self) // yes
String(validatingUTF8: ptr) // yes
unsafeBitCast(type, to:Int.self) // no
String(validatingUTF8:ptr) // no
unsafeBitCast(type,to:Int.self) // no

Using Type-Magnetic Colons
As with any style, there are always a few outlier users. Leung-style typing
(named for Kenny Leung) uses type-magnetic colons, as in the following
example:
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var soccer :Ball = newBall

Here, the colon hugs the type rather than being tied to the symbol or using
full spacing. Under this paradigm, a colon introduces the type using a mag-
netic-right style. While this approach will never be my personal choice, if used
consistently, it offers a rational coding alternative to the majority Swift con-
vention.

• Colons are as worthy of style consideration as any other language member.

• Spaces communicate prominence.

• Adopt consistent styling, regardless of language construct.

• Type-magnetic colons are just plain weird. I avoid them.
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