Extracted from:

Genetic Algorithms and Machine
Learning for Programmers

Create Al Models and Evolve Solutions

This PDF file contains pages extracted from Genetic Algorithms and Machine
Learning for Programmers, published by the Pragmatic Bookshelf. For more infor-
mation or to purchase a paperback or PDF copy, please visit http://www.prag-
prog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com
http://www.pragprog.com

The .
ogrammers

Genetic Algorithms
and Machine Learning
for Programmers

Create Al Models
— and Evolve Solutions

Frances Buontempo
edited by Tammy Coron



Genetic Algorithms and Machine
Learning for Programmers

Create Al Models and Evolve Solutions

Frances Buontempo

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Tammy Coron
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-620-4
Book version: P1.0—January 2019


https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Escape! Code Your Way Out of a Paper Bag

This book is a journey into artificial intelligence (Al), machine intelligence, and
machine learning aimed at reasonably competent programmers who want to
understand how some of these methods work. Throughout this book, you'll
use different algorithms to create models, evolve solutions, and solve problems,
all of which involve escaping (or finding a way into) a paper bag. Why a
paper bag?

In a blog post, Jeff Atwood, co-founder of Stack Overflow, reflects on many
programmers’ inability to program.' He quotes various people saying things
like, “We're tired of talking to candidates who can’t program their way out of
a paper bag.”

With that in mind, the paper bag escapology is a perfect metaphor and makes
a great case study for applying the various algorithms you’ll learn. Plus, this is
your chance to stand out from the pack and break out of the proverbial bag.

The problems presented throughout this book demonstrate Al, machine
learning, and statistical techniques. Although there’s some overlap between
the three, most will stick with machine learning. However, it's important to
understand that all of them share a common theme: that a computer can
learn without being explicitly programmed to do so.

Al isn’t new. John McCarthy, the inventor of the Lisp programming language,
coined the term artificial intelligence in a proposal for a conference in 1956.
He proposed an investigation, writing:

The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it. An attempt will be made to find how to

1. blog.codinghorror.com/why-cant-programmers-program

« Click HERE to purchase this book now. discuss


https://blog.codinghorror.com/why-cant-programmers-program
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

2

make machines use language, form abstractions and concepts, solve kinds of
. 2
problems now reserved for humans, and improve themselves.

Recently, the topic of Al has surfaced again. This is likely because of the in-
crease in computing power.

With today’s modern personal computer, Al is more accessible. Many compa-
nies now offer automated chatbots to help us online. Robots explore places
that are far too dangerous for humans. And thanks to the many programming
libraries and frameworks available to handle the complicated mathematics,
it’s possible to find a neural network implementation, train it, and have it
ready to make predictions within minutes. In the 1990s, you’d have to code
this yourself, and then wait overnight while it chugged through data.

Many examples of Al involve computers playing games like chess, Breakout,
and Go.? More generally, Al algorithms solve problems and explore data
looking for patterns. The problem-solving part of Al is sometimes called
machine learning—which includes analyzing data, allowing companies to
spot trends and make money.

Machine learning is also an old term. Arthur Samuel, who built the first self-
learning program that played checkers or draughts, introduced the term in
1959.* He researched ways to make programs get better at playing games,
thereby finding general-purpose ways to solve problems, hence the term
machine learning.

Machine learning has become a buzzword recently. It's a huge topic, so don’t
expect to master it any time soon. However, you can understand the basics
if you start with some common ideas. You might even spot people trying to
blind you with science and think of probing questions to ask:

e How did you build it? If it needs data to learn, remember: Garbage in,
garbage out. Bias in, bias out.”

e How did you test it? Is it doing what you expect?
¢ Does it work? Have you got a solution to your problem?

e What parameters did you use? Are these good enough or will something
else work better?

aaai.org/ojs/index.php/aimagazine/article/view/1904

O b W N
>
=
=
S
w
=
=
=
=
=
=
@
o
[a]
o
3
=
%)
o
3
S
<
<
=.
a
@
=3

o
o
o
w
(=)
>
@
3
@
S
@
@
=
S
S
~
9
@
2
=
=
o,
)
I
>
=3
@
=
®
>
(2]
®
@
Q
1]
=3
o
®
3
o
IS4

« Click HERE to purchase this book now. discuss


https://aaai.org/ojs/index.php/aimagazine/article/view/1904
https://www.wired.com/story/vicarious-schema-networks-artificial-intelligence-atari-demo/
https://en.wikipedia.org/wiki/Arthur_Samuel
https://www.designnews.com/content/bias-bias-out-how-ai-can-become-racist/176888957257555
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

Let's Begin * 3

e Does it apply generally? Or does it only work for your current problem
and data?

Let’s Begin

You'll start your journey by plotting points that are connected by lines. This
is not a formal machine learning algorithm, but it introduces a few important
terms and provides a clearer picture of what machine learning is and why it
matters. Later, you'll use a decision tree and launch into a more formal
machine learning algorithm.

The programming language used in this exercise is Python, although the
language itself isn’t important. In fact, throughout this book, you’ll use a
combination of Python, C++, and JavaScript. However, you can use any lan-
guage you want. Some people claim you need to use general-purpose comput-
ing on graphics processing units (GPGPU), C++, Java, FORTRAN, or Python
to implement Al algorithms. For certain applications, you may need a specific
tech stack and a room full of powerful server machines, especially if you're
looking to get power and speed for big data applications. But the truth is,
you can implement any algorithm in the language of your choice; but keep
in mind, some languages run quicker than others.

Get Out of a Paper Bag

For this exercise, imagine there’s a paper bag with a turtle inside. The turtle
is located at a specific point, and his task is to move to different points within
his environment until he makes it out of the bag. He’ll make a few attempts,
and you’ll guide his direction, telling him when to stop. To help see what’s
going on, you'll draw a line that joins the points together. You'll also keep
these points around for reference in case the turtle wants to try them again
later. By the way, there’s nothing stopping the turtle from busting through
the sides.

= turtle escapes
I

= paper bag

I
1
1
i
}:.:_ turtle starts

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

o4

Guided by a heuristic, the turtle can make it out alive. A heuristic is a guiding
principle, or best guess, at how to solve a problem. Each attempt made is
considered a candidate solution. Sometimes those solutions work, and
sometimes they fail. In the case of your wandering turtle, you need to be
careful that he doesn’t end up going around in circles and never escaping.
To prevent that from happening, you need to decide on the stopping criteria.
Stopping criteria is a way to make sure an algorithm comes out with an
answer. You can decide to stop after a maximum number of tries or as soon
as a candidate solution works. In this exercise, you’ll try both options.

It’s time to get into the mission.

Your Mission: Find a Way Out
To solve this problem, you have lots of decisions to make:

e How do you select the points?
e When do you stop?
e How will you draw the lines?

No matter how precise a description of an algorithm is, you always have
choices to make. Many require several parameters to be chosen in advance.
These are referred to as hyperparameters. Trying to tune these is a difficult
problem, but each algorithm presented comes with suggested values that
work. They may not be optimal, but you can experiment with these to see if
you can solve the problems more quickly, or use less memory.

Remember, you need some kind of stopping criteria too. For this problem,
you'll be trying two methods: guessing how many steps are needed, and letting
the turtle move around until he escapes. For other problems, it's simpler to
try a fixed number of iterations and see what happens. You can always stop
the algorithms sooner if it solves the problem. Although, sometimes you might
let them run past your first guess.

There are a few ways in which the turtle can escape the bag. He can start in
the middle and move in the same direction, one step at a time, moving along
a straight line. Once he’s out, he’ll stop, which means you don’t need to build
in a maximum number of attempts. You do, however, need to choose a step
size—but beyond that, there’s not much left to decide.

The turtle can also move forward a step and then change direction, repeatedly,
increasing the step size each time. Taking an increasing step is a heuristic
you can use to guide the turtle. Whichever direction you pick, the turtle is
likely to end up outside the bag since he takes bigger steps each time. Using

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

Your Mission: Find a Way Out ® 5

a fixed angle to change direction and linearly increasing steps will build a
spirangle.® A spirangle is like a spiral, but it has straight edges. Therefore,
with this type of movement, the turtle will leave a spirangle trail behind.

If the wandering turtle turns through a right angle, he’ll build up a rectangular,
or four-angle spirangle. Starting with a smaller step size, he moves forward
and turns through 90 degrees, twice. He increases the step size and does this
again—forward, turn, forward, turn. By starting at the small circle, he’ll leave
a trail like the one in the following figure:

€~

T

>

l

The arrows show which way he’s moving. By choosing different angles, you
get different shapes. If you can’t decide what to try, pick a few different angles
at random and vary at what point he changes the step size.

To recap, the turtle can move in straight lines or spirangles. He can also make
lots of concentric shapes. For example, drawing a small square, then a larger
one, and so on until he’s drawn a few outside the bag. He’ll have to jump to do
this. But as long as he draws at least one point outside of the bag, he succeeds.

Of course, the turtle can also pick moves at random, but you’ll have no
guarantee that he’ll end up on the outside of the bag. In fact, many of the
algorithms in this book use randomness, whether they be random points in
space or random solutions. However, these algorithms will either make can-
didate solutions guide each other, or they will compel their movement to
behave in ways more likely to solve the problems. Learning needs more than
random attempts, but it can start there.

6. en.wikipedia.org/wiki/Spirangle

« Click HERE to purchase this book now. discuss


https://en.wikipedia.org/wiki/Spirangle
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

°6

How to Help the Turtle Escape

The turtle knows when to stop and has a few ways to pick the next points.
We can pull these methods together into a program to try them all out. We
want to be able to see what he’s up to as well. The Python turtle package is
ideal for showing movement from one point to another, and spirangles are
often used to demonstrate its power. It comes with Python, so you don’t need
to install anything else. That’s handy!

Turtle graphics pre-date Python, originating from the Logo programming
language, invented by Seymore Papert.” The original version moved a robot
turtle. He wrote a significant book with Marvin Minsky Perceptrons: an

throughs in Al, making the turtle package an excellent place to start discov-
ering Al and machine learning.

Turtles and Paper Bags

When you import the package, you get a default, right-facing turtle with a
starting position of (0, 0). You can choose your turtle shape, or even design your
own. This turtle can rotate 90 degrees left, 90 degrees right, or any angle you
need. He can also move forward, backward, or goto a specific location. With a little
help, you can even get him to draw a paper bag, like this:

Escape/hello_turtle.py
Line1 import turtle

- def draw_bag():

turtle.shape('turtle')

5 turtle.pen(pencolor="brown', pensize=5)

turtle.penup()
turtle.goto(-35, 35)
turtle.pendown()

- turtle.right(90)

10 turtle.forward(70)

- turtle.left(90)
turtle.forward(
turtle.left(90)
turtle.forward(70)

70)

- if _name_ == ' main_':
turtle.setworldcoordinates(-70., -70., 70., 70.)
draw bag()

turtle.mainloop()

7. https://en.wikipedia.org/wiki/Turtle_graphics

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/fbmach/code/Escape/hello_turtle.py
https://en.wikipedia.org/wiki/Turtle_graphics
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

Let's Save the Turtle ® 7

In the main function, on line 17, setworldcoordinates sets the window size. When
you set your window size, be sure to pick something larger than the paper
bag otherwise you won’t see what the turtle is doing. Line 19, calls mainloop,
which leaves the window open. Without the last line, the window shuts
immediately after the turtle makes his move.

On line 4, you set the turtle’s shape. Since the turtle starts at the origin, move
him left and up on line 7. Because he starts off facing right, rotate him by 90
degrees, on line 9, so that he faces downwards. Then move him forward by 70
steps on line 10. Keep turning, then moving forward to outline the paper bag.

The finished bag is 70 units across, from x=-35 to +35, and 70 units high, also
from y=-35 to +35. When you're done, you'll see the three edges of the bag and
the turtle:

Now that you have a paper bag and know how to move a turtle, it’s time to
get to work.

Let’s Save the Turtle

The goal is to help the turtle escape the bag you saw earlier on page 6. The
easiest way is to make him move in a straight line. He mlghtthenmarch
through the sides of the bag. You can constrain him to only escape through
the top, but let him go where he wants for now. When he’s out, you need to
get him to stop. But how do you know when he’s out? The left edge of the bag
is at -35, and the right is at +35. The bottom and top are also at -35 and +35,

respectively. This makes checking his escape attempts easy:

Escape/escape.py
def escaped(position):
x = int(position[0])
y = int(position[1])
return x < -35 or x > 35 0r y < -350ry > 35

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/fbmach/code/Escape/escape.py
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

°8

Now all you need to do is set him off and keep him going until he’s out:

Escape/escape.py
def draw_line():
angle = 0
step = 5
t = turtle.Turtle()
while not escaped(t.position()):
t.left(angle)
t.forward(step)

Simple, although a little boring. Let’s try some concentric squares.

Squares

To escape using squares, the turtle will need to increase their size as he goes.
As they get bigger, he’ll get nearer to the edges of the paper bag, eventually
going through it and surrounding it. To draw a square, move forward and
turn through a right angle four times:

Escape/escape.py
def draw_square(t, size):
L= 1]
for i in range(4):
t.forward(size)
t.left(90)
store position data(L, t)
return L

Store the position data, including whether or not it’s in or out of the paper bag:

Escape/escape.py
def store_position_data(L, t):
position = t.position()
L.append([position[0], position[l], escaped(position)])

You'll need to choose a number of squares to draw. How many do you think
you need to get the turtle out of the bag? Experiment if you can’t work it out.
Now, move your turtle to the bottom left corner and draw a square, increasing
the size as you go:

Escape/escape.py
def draw_squares(number):

t = turtle.Turtle()

L =11

for i in range(1l, number + 1):
t.penup()

t.goto(-1i, -1i)

t.pendown ()

L.extend(draw square(t, i * 2))
return L

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/fbmach/code/Escape/escape.py
http://media.pragprog.com/titles/fbmach/code/Escape/escape.py
http://media.pragprog.com/titles/fbmach/code/Escape/escape.py
http://media.pragprog.com/titles/fbmach/code/Escape/escape.py
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach

Let's Save the Turtle ® 9

You extend your list L of positions each time your turtle draws a square so you
can save them:

Escape/escape.py
def draw_squares_until_escaped(n):
t = turtle.Turtle()
L = draw_squares(n)
with open("data square", "wb") as f:
pickle.dump(L, f)

You'll use this data in the next chapter.

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/fbmach/code/Escape/escape.py
http://pragprog.com/titles/fbmach
http://forums.pragprog.com/forums/fbmach



