
Extracted from:

Stripes
. . . and Java Web Development Is Fun Again

This PDF file contains pages extracted from Stripes, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

CREATING FORMS 62

Joe Asks. . .

What If I Don’t Like How Messages Are Displayed?

By default, information messages are displayed in a plain
unordered list (and tags). We’ll see how to cus-
tomize this format in Chapter 6, Customizing Stripes Messages,
on page 123.

the contact list. Let’s see about creating new contacts and updating

existing contacts with the Contact Form page.

3.6 Creating Forms

Forms are a breeze to create in Stripes. There is a Stripes tag for every

type of input field (text field, radio button, and so on) and for submit

buttons. Using these tags instead of plain HTML gives you extra fea-

tures such as repopulating the inputs, highlighting them when they

are in error, and supporting localization.

When the user submits a form, Stripes binds the values in the form

fields to the corresponding properties in the action bean and triggers

the event handler associated with the submit button. You can have

multiple submit buttons without having to do anything special to figure

out which button the user clicked: each button triggers its own event

handler on the action bean.

Input fields have to be associated to properties of an action bean, but

you don’t have to copy the properties of a model object to the action

bean. Instead, you put the model object directly in the action bean and

use nested properties.

For example, you can add a Contact property in ContactListActionBean

and create a text field associated with the contact’s first name with

<s:text name="contact.firstName"/>. To set the value, Stripes calls getCon-

tact().setFirstName() on the action bean. You don’t even have to worry

about a NullPointerException. If getContact() returns null, Stripes creates a

new Contact object for you. This saves you a great deal of code because

you don’t have to copy each model property in the action bean and

transfer information back and forth. If your model objects use other

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fdstr

CREATING FORMS 63

Figure 3.10: The contact form

model objects, that’s no problem either—Stripes happily uses deeply

nested properties, such as "contact.address.street.name". Let’s put all this

to work and build a form for contacts.

Creating a Blank Form

The <s:form> tag creates a form associated with the action bean indi-

cated in its beanclass= attribute. Within the tag, we add input fields

with tags such as <s:text>, <s:radio>, and every other type of input.

These tags all have a name= attribute in which we put the name of the

action bean property that receives the user’s input. To complete the

form, we add one or more submit buttons with the <s:submit> tag and

the name= of the event handler associated with the button.

Have a look at the following code. This creates the form shown in Fig-

ure 3.10:

Download email_05/web/WEB-INF/jsp/contact_form.jsp

Ê <s:form beanclass="stripesbook.action.ContactFormActionBean">

<table class="form">

<tr>

<td>Email:</td>
Ë <td><s:text name="contact.email"/></td>

</tr>

<tr>

<td>First name:</td>

<td><s:text name="contact.firstName"/></td>

</tr>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_form.jsp
http://www.pragprog.com/titles/fdstr

CREATING FORMS 64

<tr>

<td>Last name:</td>

<td><s:text name="contact.lastName"/></td>

</tr>

<tr>

<td>Phone number:</td>

<td><s:text name="contact.phoneNumber"/></td>

</tr>

<tr>

<td>Birth date:</td>

<td><s:text name="contact.birthDate"/></td>

</tr>

<tr>

<td> </td>

<td>
Ì <s:submit name="save" value="Save"/>

<s:submit name="cancel" value="Cancel"/>

</td>

</tr>

</table>

</s:form>

At Ê, we’re creating a form associated with the ContactFormActionBean

class, which we’ll be writing shortly. Starting at Ë, the text input fields

for the contact’s information are created with the <s:text> tag and

name= attributes for the properties of the Contact class. The submit

buttons (Ì) call either save() or cancel() on the action bean according

to which one the user clicked. The value= attribute is the button’s label.

Notice how there is a very clean and clear relationship between the

JSP and the action bean. The action bean’s class name is indicated in

the form tag’s beanclass= attribute, each input’s name= corresponds to

an action bean property, and each submit button’s name= is an action

bean’s event handler.

Let’s create the ContactFormActionBean to handle the form submission.

We’ll need the following:

• A default event handler that forwards to contact_form.jsp

• The save() and cancel() event handlers

• The contactId and contact properties

• The ContactDao to save the contact

Looking at those last two points, you’ll realize that the ContactListAction-

Bean class already has the contact properties and DAO. You probably

don’t like copying and pasting code any more than I do, so let’s do a

little refactoring.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fdstr

CREATING FORMS 65

BaseActionBean

ContactBaseActionBean

- Integer contactId

- Contact contact

- ContactDao contactDao

ContactListActionBean

- Resolution list()

- Resolution view()

- Resolution delete()

- List<Contact> contacts

ContactFormActionBean

- Resolution form()

- Resolution save()

- Resolution cancel()

Figure 3.11: Action bean class diagram

Check out Figure 3.11. We’ll create the ContactBaseActionBean class and

put the common code in there. Then, ContactListActionBean and Contact-

FormActionBean can inherit from it.

Here is the ContactBaseActionBean class:

Download email_05/src/stripesbook/action/ContactBaseActionBean.java

package stripesbook.action;

public abstract class ContactBaseActionBean extends BaseActionBean {

private ContactDao contactDao = MockContactDao.getInstance();

protected ContactDao getContactDao() {

return contactDao;

}

private Integer contactId;

public Integer getContactId() {

return contactId;

}

public void setContactId(Integer id) {

contactId = id;

}

private Contact contact;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fdstr/code/email_05/src/stripesbook/action/ContactBaseActionBean.java
http://www.pragprog.com/titles/fdstr

CREATING FORMS 66

public Contact getContact() {

if (contactId != null) {

return contactDao.read(contactId);

}

return contact;

}

public void setContact(Contact contact) {

this.contact = contact;

}

}

The code in the ContactFormActionBean class is now lean and mean:

Download email_05/src/stripesbook/action/ContactFormActionBean.java

package stripesbook.action;

public class ContactFormActionBean extends ContactBaseActionBean {

private static final String FORM="/WEB-INF/jsp/contact_form.jsp";

@DefaultHandler
Ê public Resolution form() {

return new ForwardResolution(FORM);

}
Ë public Resolution save() {

Contact contact = getContact();

getContactDao().save(contact);

getContext().getMessages().add(

new SimpleMessage("{0} has been saved.", contact)

);

return new RedirectResolution(ContactListActionBean.class);

}
Ì public Resolution cancel() {

getContext().getMessages().add(

new SimpleMessage("Action cancelled.")

);

return new RedirectResolution(ContactListActionBean.class);

}

}

The default event handler at Ê forwards to contact_form.jsp. When the

user clicks the Save button, save() is called (Ë) and uses the DAO to

save the contact. It then adds an information message to the list and

redirects to ContactListActionBean, which displays the messages and the

table of contacts. The event handler for the Cancel button (Ì) just adds

an information message and redirects to the contact list without saving

the contact.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fdstr/code/email_05/src/stripesbook/action/ContactFormActionBean.java
http://www.pragprog.com/titles/fdstr

CREATING FORMS 67

Figure 3.12: After creating a contact

To send the user from the contact list to the form, add a Create a New

Contact link in contact_list.jsp:

Download email_05/web/WEB-INF/jsp/contact_list.jsp

<s:link beanclass="stripesbook.action.ContactFormActionBean">

Create a New Contact

</s:link>

The result of using the form to create a new contact fictitiously named

Kaylyn Shallenberger is shown in Figure 3.12.

There’s only one more thing we need to do: add the Update links in the

Action column.

Updating Information with a Prepopulated Form

Clicking the Update link should open the contact form prepopulated

with the selected contact’s information, as in Figure 3.13, on the next

page. First, create the link with the selected contact’s ID as a parameter:

Download email_05/web/WEB-INF/jsp/contact_list.jsp

<s:link beanclass="stripesbook.action.ContactFormActionBean">

<s:param name="contactId" value="${contact.id}"/>

Update

</s:link>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_list.jsp
http://www.pragprog.com/titles/fdstr

CREATING FORMS 68

Figure 3.13: Prepopulated form

Remember that the getContact() method in ContactBaseActionBean al-

ready retrieves the selected contact if the contact ID parameter was

provided:

Download email_05/src/stripesbook/action/ContactBaseActionBean.java

public Contact getContact() {

if (contactId != null) {

return contactDao.read(contactId);

}

return contact;

}

The nice thing with the Stripes input tags is that they also read from

the property in the name= attribute. So by making the selected contact

available through getContact(), the inputs prepopulate themselves with

the contact information such as "contact.firstName", "contact.lastName",

and so on.

Just like that, we’re almost there. To get the form to work for updating

an existing contact, we need to resubmit the contact ID parameter that

was sent with the Update link.

A hidden input does the trick:

Download email_05/web/WEB-INF/jsp/contact_form.jsp

<s:form beanclass="stripesbook.action.ContactFormActionBean">

<div><s:hidden name="contact.id"/></div>

<table class="form">

The input obtains its value just like the other inputs and becomes a

parameter when the form is submitted. It took very little code to add the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fdstr/code/email_05/src/stripesbook/action/ContactBaseActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_form.jsp
http://www.pragprog.com/titles/fdstr

USE A FORWARD OR A REDIRECT? 69

How Tags and Attributes Invoke Action Beans

We’ve used several tags and attributes to invoke methods on
action beans. Here’s a summary of what we’ve seen so far:

Tag and Attribute Invocation on Action Bean
<s:link beanclass="pkg.Name"> pkg.Name’s default event handler
<s:link event="eventName"> public Resolution eventName()

<s:link href="URL"> Action bean bound to URL

<s:param name="property"> setProperty(value)

<s:form beanclass="pkg.Name"> pkg.Name’s default event handler
<s:form action="URL"> Action bean bound to URL

<s:hidden name="property"> setProperty(value)

<s:text name="property"> setProperty(value)

<s:submit name="eventName"> public Resolution eventName()

Update link and get inputs that autopopulate themselves, and before

we know it, the contact form is complete.

3.7 Use a Forward or a Redirect?

After creating, updating, or deleting a contact, we’re returning a Redi-

rectResolution to ContactListActionBean instead of a ForwardResolution to

contact_list.jsp. Why? Let’s discuss the difference between the two reso-

lutions and how to decide which one to use.

The Redirect-After-Side-Effect Pattern

The first thing to notice is the create, update, and delete operations all

have side effects—they change the state of the data on the server.

Suppose that we returned a ForwardResolution to a contact_list.jsp after

the user has deleted a contact. Looking at Figure 3.14, on the following

page, we see that the last request is “delete this contact.” The prob-

lem is that if the user clicks the browser’s Reload button, the “delete

this contact” request will be sent again, causing an error because the

contact has already been deleted.

In general, it is a bad idea to use a forward after any request that should

not be resubmitted by hitting Reload . Imagine a request that makes a

purchase with the user’s credit card. You wouldn’t want to repeatedly

charge the credit card!

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fdstr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Stripes...and Java Web Development Is Fun Again’s Home Page

http://pragprog.com/titles/fdstr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fdstr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/fdstr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fdstr
www.pragprog.com/catalog

	Learning the Controls
	The Core: Action Beans and JSPs
	Creating Forms
	Use a Forward or a Redirect?

