
Extracted from:

Advanced Rails Recipes

This PDF file contains pages extracted from Advanced Rails Recipes, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Recipe 13

Handle Multiple Models in

One Form

By Ryan Bates (http://railscasts.com/)

Ryan has been involved in web development since 1998. In 2005 he started working pro-

fessionally with Ruby on Rails and is now best known for his work on Railscasts, the free Ruby

on Rails screencast series.

Problem

Most of the form code you see handles one model at a time. That’s not

always practical. Sometimes you need to create and/or update two (or

more) models in a single form, where there is a one-to-many association

between them.

Solution

Let’s say we’re keeping track of tasks we need to do on projects. When

we create or update a project, we’d like to add, remove, and update its

tasks in a single form. Here’s what we’re aiming for:

Let’s start by creating a has_many relationship between Project and Task.

To keep things simple, we’ll give each model a required attribute called

name.

class Project < ActiveRecord::Base

has_many :tasks, :dependent => :destroy

validates_presence_of :name

end

http://railscasts.com/

13. HANDLE MULTIPLE MODELS IN ONE FORM 69

class Task < ActiveRecord::Base

belongs_to :project

validates_presence_of :name

end

We’ll be using the Prototype JavaScript library, so before we go any

further, let’s make sure it’s loaded in our layout file:

Download MultiModelForm/app/views/layouts/application.html.erb

<%= javascript_include_tag :defaults %>

Now we turn our attention to the form for creating a project along with

its associated, multiple tasks. When dealing with multiple models in

one form, it’s helpful to make one model the primary focus and build

the other models through the association.

In this case, we’ll make Project the primary model and build its tasks

through the has_many association. So in the new action of our Pro-

jectsController, we create a Project object like normal. However, we also

initialize a new Task (in memory) that’s associated with the Project so

that our form has something to work with:

Download MultiModelForm/app/controllers/projects_controller.rb

def new

@project = Project.new

@project.tasks.build

end

The form template is a bit tricky since we need to handle fields for the

Project model and each of its Task models. So, let’s break the problem

down a bit by using a partial to render the Task fields and an add_task_link

helper to create the link that adds a new task:

Download MultiModelForm/app/views/projects/_form.html.erb

<%= error_messages_for :project %>

<% form_for @project do |f| -%>

<p>

Name: <%= f.text_field :name %>

</p>

<div id="tasks">

<%= render :partial => 'task', :collection => @project.tasks %>

</div>

<p>

<%= add_task_link "Add a task" %>

</p>

<p>

<%= f.submit "Submit" %>

</p>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/controllers/projects_controller.rb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/views/projects/_form.html.erb
http://www.pragprog.com/titles/fr_arr

13. HANDLE MULTIPLE MODELS IN ONE FORM 70

<% end -%>

The new and edit templates simply render this form partial so that we

have a consistent form for creating and updating a project. The form

partial turns around and renders a task partial for each of the project’s

tasks. Before we get into the contents of the task partial, let’s take a

look at that add_task_link helper method:

Download MultiModelForm/app/helpers/projects_helper.rb

def add_task_link(name)

link_to_function name do |page|

page.insert_html :bottom, :tasks, :partial => 'task', :object => Task.new

end

end

When we click the “Add a task” link, we want a new set of task fields

to appear at the bottom of the existing task fields in the form. Rather

than bother the server with this, we can use JavaScript to add the fields

dynamically. The link_to_function method accepts a block of RJS code. We

usually associate RJS code with asynchronous calls back to the server.

But in this case the RJS code generates JavaScript that gets executed

in the browser immediately when the user clicks the link. The upshot is

rendering the fields for adding a new task does not require a trip back

to the server, which leads to faster response times.

Looking back to the form partial, we’re using form_for to dedicate the

form to the @project model. How then do we add fields for each of the

project’s tasks? The task partial holds the answer:

Download MultiModelForm/app/views/projects/_task.html.erb

<div class="task">

<% new_or_existing = task.new_record? ? 'new' : 'existing' %>

<% prefix = "project[#{new_or_existing}_task_attributes][]" %>

<% fields_for prefix, task do |task_form| -%>

<p>

Task: <%= task_form.text_field :name %>

<%= link_to_function "remove", "$(this).up('.task').remove()" %>

</p>

<% end -%>

</div>

The key ingredient here is the fields_for method. It behaves much like

form_for but does not render the surrounding form HTML tag. This lets

us switch the context to a different model in the middle of a form—as if

we’re embedding one form within another.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/helpers/projects_helper.rb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/views/projects/_task.html.erb
http://www.pragprog.com/titles/fr_arr

13. HANDLE MULTIPLE MODELS IN ONE FORM 71

The first parameter to fields_for is very important. This string will be

used as the prefix for the name of each task form field. Because we’ll

be using this partial to also render existing tasks—and we want to keep

them separate when the form is submitted—in the prefix we include an

indication of whether the task is new or existing. (Ideally we’d create

the prefix string in a helper, but we’ve inlined it here to avoid further

indirection.)

The generated HTML for a new task name input looks like this:

<input name="project[new_task_attributes][][name]" size="30" type="text"/>

If this were an existing task, Rails would automatically place the task

ID between the square brackets, like this:

<input name="project[existing_task_attributes][7][name]" size="30" type="text"/>

Now when the form is submitted, Rails will decode the input element’s

name to impose some structure in the params hash. Square brackets

that are filled in become keys in a nested hash. Square brackets that

are empty become an array. For example, if we submit the form with

two new tasks, the params hash looks like this:

"project" => {

"name" => "Yard Work",

"new_task_attributes" => [

{ "name" => "rake the leaves" },

{ "name" => "paint the fence" }

]

}

Notice that the attributes for the project and each task are nestled

inside the project hash. This is convenient because it means the create

action back in our controller can simply pass all the project attributes

through to the Project model without worrying about what’s inside:

Download MultiModelForm/app/controllers/projects_controller.rb

def create

@project = Project.new(params[:project])

if @project.save

flash[:notice] = "Successfully created project and tasks."

redirect_to projects_path

else

render :action => 'new'

end

end

This looks like a standard create action for a single-model form. But

there’s something subtle happening here. When we call Project.new(params[:project]),

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/controllers/projects_controller.rb
http://www.pragprog.com/titles/fr_arr

13. HANDLE MULTIPLE MODELS IN ONE FORM 72

Active Record assumes that our Project model has a corresponding

attribute called new_task_attributes because it sees a key called new_task_attributes

in the params[:project] hash. That is, Active Record will try to mass

assign all the data in the params[:project] hash to corresponding attributes

in the Project model. But we don’t have a new_task_attributes attribute in

our Project model.

One convenient way to keep all this transparent from the controller’s

perspective is to use a virtual attribute. To do that, we just create a set-

ter method in our Project model called new_task_attributes=, which takes

an array and builds a task for each element:

Download MultiModelForm/app/models/project.rb

def new_task_attributes=(task_attributes)

task_attributes.each do |attributes|

tasks.build(attributes)

end

end

It may not look like these tasks are being saved anywhere. In fact, Rails

will do that automatically when the project is saved because both the

project and its associated tasks are new records.

That’s it for creating a project; now let’s move on to updating one.

Just like before, we need to be able to add and remove tasks dynami-

cally, but this time if a task already exists, it should be updated instead.

The controller actions need to be concerned only about the project, so

they’re fairly conventional. As before, the updating of the tasks will be

handled in the Project model:

Download MultiModelForm/app/controllers/projects_controller.rb

def edit

@project = Project.find(params[:id])

end

def update

params[:project][:existing_task_attributes] ||= {}

@project = Project.find(params[:id])

if @project.update_attributes(params[:project])

flash[:notice] = "Successfully updated project and tasks."

redirect_to project_path(@project)

else

render :action => 'edit'

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/models/project.rb
http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/controllers/projects_controller.rb
http://www.pragprog.com/titles/fr_arr

13. HANDLE MULTIPLE MODELS IN ONE FORM 73

One important note: The first line of the update action sets the exist-

ing_task_attributes parameter to an empty hash if it’s not set already.

Without this line, there would be no way to delete the last task from

a project. If there are no task fields on the form (because we removed

them all with JavaScript), then existing_task_attributes[] won’t be assigned

by the form, which means our Project#existing_task_attributes= method

won’t be invoked. By assigning an empty hash here if existing_task_attributes[]

is empty, we ensure the Project#existing_task_attributes= method is called

to delete the last task.

The form partial can stay the same. However, when we submit the form

with existing tasks, the params[:project] hash will include a key called

existing_task_attributes. That is, when we update the project, the POST

parameters will look like this:

"project" => {

"name" => "Yard Work",

"existing_task_attributes" => [

{

"1" => {"name" => "rake the leaves"},

"2" => {"name" => "paint the fence"},

}

]

"new_task_attributes" => [

{ "name" => "clean the gutters" }

]

}

To handle that, we need to add an existing_task_attributes= method to our

Project model, which will take each existing task and either update it or

destroy it depending on whether the attributes are passed:

Download MultiModelForm/app/models/project.rb

after_update :save_tasks

def existing_task_attributes=(task_attributes)

tasks.reject(&:new_record?).each do |task|

attributes = task_attributes[task.id.to_s]

if attributes

task.attributes = attributes

else

tasks.delete(task)

end

end

end

def save_tasks

tasks.each do |task|

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/MultiModelForm/app/models/project.rb
http://www.pragprog.com/titles/fr_arr

13. HANDLE MULTIPLE MODELS IN ONE FORM 74

task.save(false)

end

end

Notice that we’re saving the tasks in an after_update callback. This is

important because, unlike before, the existing tasks will not automat-

ically be saved when the project is updated.18 And since callbacks are

wrapped in a transaction, it will properly roll back the save if an unex-

pected problem occurs.

Passing false to the task.save method bypasses validation. Instead, to

ensure that all the tasks get validated when the project is validated, we

just add this line to the Project model:

validates_associated :tasks

This ensures everything is valid before saving. And if validation fails,

then the use of error_messages_for :project in the form template includes

the validation errors for the project and any of its tasks.

So now we can create and edit projects and their tasks in one fell swoop.

And by using virtual attributes, we kept the controller code happily

ignorant that we were handling multiple models from a single form.

Discussion

Once you start putting more than one model in a form, you’ll likely

want to create a custom error message helper to do things such as

ignore certain errors and clarify others. See Snack Recipe 17, Customize

Error Messages, on page 91 for how to write a custom error_messages_for

method.

Date fields cause problems because, for some reason, Rails removes the

[] from the name of the field. This can be fixed by manually specifying

the :index option and setting it to an empty string if the task is new:

<%= task_form.date_select :completed_at,

:index => (task.new_record? ? '' : nil) %>

Unfortunately, checkboxes won’t work in this recipe because their value

is not passed by the browser when the box is unchecked. Therefore, you

cannot tell which task a given checkbox belongs to when a new project

18. This behavior can vary depending on the type of association and whether the records

are new. It’s a good idea to thoroughly test each combination to ensure every model is

validated and saved properly.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_arr

13. HANDLE MULTIPLE MODELS IN ONE FORM 75

is created. To get around this problem, you can use a select menu for

boolean fields:

<%= task_form.select :completed, [['No', false], ['Yes', true]] %>

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_arr

