
Extracted from:

Advanced Rails Recipes

This PDF file contains pages extracted from Advanced Rails Recipes, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Recipe 18

Upload Images with

Thumbnails

By Rick Olson (http://entp.com)

Rick has been an active contributor to the Rails community for more than three years.

He has released numerous open source plug-ins and applications such as Mephisto and

Altered Beast. He currently spearheads Rails R&D at entp.com, driving the innovation behind

the Lighthouse and Warehouse applications.

Problem

You want to let users upload images (or any media file) as an “attach-

ment” to one of your models. In the case of images, you also want to

generate a variety of thumbnails for use around your site.

Ingredients

• The attachment_fu plug-in:

$ script/plugin install ←֓

http://svn.techno-weenie.net/projects/plugins/attachment_fu/

• One of the following image-processing libraries and any libraries

on which they depend:

– ImageScience:21 A lightweight inline-Ruby library that resizes

only images. It wraps the FreeImage library, which you’ll also

need.

– RMagick:22 The granddaddy, both in terms of advanced image-

processing features and memory usage. It wraps the ImageMag-

ick library, which you’ll also need.

– minimagick:23 It’s much easier on memory than RMagick because

it runs the ImageMagick command in a shell. You’ll also need

ImageMagick installed.

Image processing is best handled by native code. Regardless of the

image processor you choose, you’ll end up either building a native

21. http://seattlerb.rubyforge.org/ImageScience.html

22. http://rmagick.rubyforge.org/

23. http://rubyforge.org/projects/mini-magick/

http://entp.com
entp.com
http://seattlerb.rubyforge.org/ImageScience.html
http://rmagick.rubyforge.org/
http://rubyforge.org/projects/mini-magick/

18. UPLOAD IMAGES WITH THUMBNAILS 94

library or downloading a prebuilt library specific to your operating sys-

tem. Then you generally install a Ruby library (gem) that wraps the

image-processing library with a Ruby API. If you already have one of

these installed, go with it!

Solution

Suppose we’re building an online jukebox and we need to upload cover

images for the albums. While we’re at it, we’d like to generate a few

cover image thumbnails of varying sizes to sprinkle around the site.

Here’s where the attachment_fu plug-in really shines. Rather than grov-

eling around at the API level of whatever Ruby image library we have

installed, we can simply declare how we want files to get processed and

let attachment_fu work out the details.

Let’s start with what we need in the database. Now, we could try to

cram all the album and cover information into one database table. But

that gets messy, so instead we’ll split them up into two tables. First,

we need a database table to store information about the cover image:

its size, where it lives, which album it belongs to, and so on. We won’t

actually store the cover image itself in the database, just its metadata.

Here’s the migration for the Cover model:

Download UploadImages/db/migrate/002_create_covers.rb

class CreateCovers < ActiveRecord::Migration

def self.up

create_table :covers do |t|

t.integer :album_id, :parent_id, :size, :width, :height

t.string :content_type, :filename, :thumbnail

t.timestamps

end

end

def self.down

drop_table :covers

end

end

The attachment_fu plug-in requires all these columns, with the excep-

tion of the album_id column, which is specific to our application. In par-

ticular, note that the parent_id column is not a foreign key to an album.

Rather, it’s a foreign key used by thumbnails to point to their parent

cover images in the same covers table. Again, the covers table just stores

the information about the cover, not the actual cover image. When an

image is uploaded, its location will be stored in the covers table, and

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/db/migrate/002_create_covers.rb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 95

the actual file data will be stored somewhere else (we’ll get to where in

a minute).

Next we need a Cover model (no, not that kind!). Here’s what it looks

like:

Download UploadImages/app/models/cover.rb

class Cover < ActiveRecord::Base

belongs_to :album

has_attachment :content_type => :image,

:storage => :file_system,

:max_size => 500.kilobytes,

:resize_to => '384x256>',

:thumbnails => {

:large => '96x96>',

:medium => '64x64>',

:small => '48x48>'

}

validates_as_attachment

end

There’s a lot of magic happening here. In the has_attachment method,

we tell attachment_fu what to do with the uploaded image via a number

of options:

• :content_type specifies the content types we allow. In this case,

using :image allows all standard image types.

• :storage sets where the actual cover image data is stored. So, in

fact, we could have stored the covers in the database (:db_file), but

the filesystem is easier to manage.

• :max_size is, not surprisingly, the maximum size allowed. It’s always

good to set a limit on just how much data you want your app to

ingest (the default is 1 megabyte).

• :resize_to is either an array of width/height values (for example,

:resize_to => [384, 286]) or a geometry string for resizing the image.

Geometry strings are more flexible but not supported by all image

processors. In this case, by using the > symbol at the end, we’re

saying that the image should be resized to 384 by 286 only if the

width or height exceeds those dimensions. Otherwise, the image

is not resized.

• :processor sets the image processor to use: ImageScience, Rmagick,

or MiniMagick. As we haven’t specified one, attachment_fu will use

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/models/cover.rb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 96

whichever library we have installed.

• :thumbnails is a hash of thumbnail names and resizing options.

Thumbnails won’t be generated if you leave off this option, and you

can generate as many thumbnails as you like simply by adding

arbitrary names and sizes to the hash.

After describing how the image should be processed, we call the vali-

dates_as_attachment method to prevent image sizes out of range from

being saved. (They’re still uploaded into memory, mind you.) In addi-

tion, because we set an image content type, WinZip files won’t be wel-

come, for example.

Of course, we’ll also need an Album model to “attach” a Cover object to,

but there’s not much to it:

Download UploadImages/app/models/album.rb

class Album < ActiveRecord::Base

has_one :cover, :dependent => :destroy

end

OK, with our models created, we turn our attention to the form used to

upload the cover image file when we create a new Album:

Download UploadImages/app/views/albums/new.html.erb

<%= error_messages_for :album, :cover %>

<% form_for(@album, :html => { :multipart => true }) do |f| %>

<p>

<%= label :album, :title %>

<%= f.text_field :title %>

</p>

<p>

<%= label :album, :artist %>

<%= f.text_field :artist %>

</p>

<p>

<%= label :album, :cover %>

<%= file_field_tag :cover_file %>

We accept JPEG, GIF, or PNG files up to 500 KB.

</p>

<p>

<%= f.submit "Create" %>

</p>

<% end %>

It’s a fairly standard form, but it has three important ingredients. First,

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/models/album.rb
http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/views/albums/new.html.erb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 97

to allow the form to accept files as POST data, the form_for includes the

:multipart => true option. (If you forget to add this, you’re in for a long

afternoon of debugging.)

Second, the form uses the file_field_tag helper (instead of f.file_field) to

generate a Choose File button on the form. In this case, the name of

the file input field will be :cover_file.

Finally, the error_messages_for method handles the @album and @cover

objects so that it displays errors related to both objects.

So far, so good. Next, we need to do something with the cover image

that gets uploaded. Specifically, we need to use its file data to create

a Cover object and attach it to the Album being created. This gets a

bit tricky: we’re creating two models from one form. So, to keep the

create action of our AlbumsController clean, we’re going to introduce a

new AlbumService class and let it do the grunt work. Here’s the create

action:

Download UploadImages/app/controllers/albums_controller.rb

def create

@album = Album.new(params[:album])

@cover = Cover.new(:uploaded_data => params[:cover_file])

@service = AlbumService.new(@album, @cover)

respond_to do |format|

if @service.save

flash[:notice] = 'Album was successfully created.'

format.html { redirect_to(@album) }

format.xml { render :xml => @album,

:status => :created,

:location => @album }

else

format.html { render :action => :new }

format.xml { render :xml => @album.errors,

:status => :unprocessable_entity }

end

end

end

This populates the album-specific fields—name, artist, and so on—into

an Album model. Then it assigns the value of the :cover_file parameter

(the file data) to the :uploaded_data attribute of the Cover model. This is

a virtual attribute that was added to the Cover model when we declared

has_attachment. The create action then creates a new AlbumService with

the album and cover and attempts to save it.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/controllers/albums_controller.rb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 98

All the good stuff happens in the AlbumService model. Here’s what it

looks like:

Download UploadImages/app/models/album_service.rb

class AlbumService

attr_reader :album, :cover

def initialize(album, cover)

@album = album

@cover = cover

end

def save

return false unless valid?

begin

Album.transaction do

if @cover.new_record?

@album.cover.destroy if @album.cover

@cover.album = @album

@cover.save!

end

@album.save!

true

end

rescue

false

end

end

def valid?

@album.valid? && @cover.valid?

end

end

This class looks like an Active Record model: it has a save method and a

valid? method. However, it doesn’t subclass ActiveRecord::Base. It’s just

a plain ol’ Ruby class that manages two Active Record models. You

can name these methods however you like. I just find it easier to use

conventional names.

The save method needs to save both the album and its cover. Now,

attachment_fu hooks into the life cycle of the Cover model to do lots

of special processing. For example, the thumbnails are automatically

generated after the cover has been saved. Things can go wrong when a

cover is being saved, in which case attachment_fu will raise an excep-

tion. We handle that by wrapping the saving of both the cover and the

album in a transaction block. If an exception is raised in the block, all

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/models/album_service.rb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 99

the database operations are rolled back. That way, we don’t end up with

one model being saved without the other.

Next, we need to deal with updating an album and potentially its cover

image. The form for updating an album looks just like the form for

creating one. There’s nothing new there. However, the update action of

the AlbumsController needs to use the AlbumService, too.

Download UploadImages/app/controllers/albums_controller.rb

def update

@album = Album.find(params[:id])

@cover = @album.cover

@service = AlbumService.new(@album, @cover)

respond_to do |format|

if @service.update_attributes(params[:album], params[:cover_file])

flash[:notice] = 'Album was successfully updated.'

format.html { redirect_to @album }

format.xml { head :ok }

else

@cover = @service.cover

format.html { render :action => :edit }

format.xml { render :xml => @album.errors,

:status => :unprocessable_entity }

end

end

end

The update action starts by creating an AlbumService for the album

we’re editing and its current cover. Then it simply throws the album

form parameters, including the :cover_file parameter, into the AlbumSer-

vice#update_attributes method. Here’s what that method looks like:

Download UploadImages/app/models/album_service.rb

def update_attributes(album_attributes, cover_file)

@album.attributes = album_attributes

unless cover_file.blank?

@cover = Cover.new(:uploaded_data => cover_file)

end

save

end

When we’re editing an album, we may want to keep its existing cover

image by not choosing a new file on the edit form. Then, when update_attributes

is called, the cover_file parameter will be blank. In that case, the save

method simply saves the album and leaves its current cover intact.

However, we may want to change an album’s cover by uploading a new

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/controllers/albums_controller.rb
http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/models/album_service.rb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 100

cover image file. In that case, the value of the cover_file parameter will

reference the file data when update_attributes is called. Because it’s not

blank, a new @cover object is created with the file data. Then, when save

is called, it’ll destroy the album’s existing cover (and its thumbnails)

and save the new cover (and generate its thumbnails). All this happens

within a transaction, just as it does when creating a new album.

OK, now we’re off to the races: we select a cover file using the Choose

File button on the form, the cover image is uploaded to a file on our

server, and the file metadata is stored in the covers database table. We

end up with four rows in the covers table: one for the resized original

(parent) image and one for each of the three thumbnails. The thumb-

nails have their parent_id column set to the primary key of the cover

from which they were created.

Each image also has a base filename recorded in the covers table. The

public_filename method uses this information to give us the public path

to the resized original file. Let’s inspect our images in the console:

$ ruby script/console

>> c = Cover.find :first

=> #<Cover id: 1, album_id: 1, parent_id: nil, size: 72620, width: 201,

height: 201, content_type: "image/png",

filename: "foo_fighters.png", thumbnail: nil>

>> c.public_filename

=> "/covers/0000/0001/foo_fighters.png"

The public_filename method also takes the name of a thumbnail we used

in the :thumbnails hash:

>> c.public_filename(:small)

=> "/covers/0000/0001/foo_fighters_small.png"

>> c.public_filename(:medium)

=> "/covers/0000/0001/foo_fighters_medium.png"

>> c.public_filename(:large)

=> "/covers/0000/0001/foo_fighters_large.png"

Since we’re using the filesystem as storage, our cover image files are

stored relative to the RAILS_ROOT/public directory on our server.24 The

thumbnail files have a suffix that corresponds to the name we used in

the :thumbnails hash.

Finally, let’s write a view helper so we can easily show covers in various

sizes (and linked to the full-size image) around our jukebox site:

24. The default path prefix for the filesystem is public/#{table_name}. This can be changed

by using the :path_prefix option on the has_attachment method.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 101

Download UploadImages/app/helpers/albums_helper.rb

module AlbumsHelper

def cover_for(album, size = :medium)

if album.cover

cover_image = album.cover.public_filename(size)

link_to image_tag(cover_image), album.cover.public_filename

else

image_tag("blank-cover-#{size}.png")

end

end

end

Then we can use the cover_for helper to list all the albums and their

covers:

Download UploadImages/app/views/albums/index.html.erb

<table>

<% for album in @albums -%>

<tr>

<td><%= cover_for(album, :large) %></td>

<td>

<%= link_to album.title, album %>

by <%= h album.artist %>

</td>

</tr>

<% end -%>

</table>

Now we can create and update an album and its cover image. The cre-

ation step was fairly straightforward, but dealing with two models had

the added complication of using a transaction. The update step added

a bit more degree of difficulty in deleting the old cover images. By intro-

ducing an AlbumService class, we were able to encapsulate this com-

plexity in one place and keep the controller clean. If other controllers

need to manipulate covers, they can reuse AlbumService to do the heavy

lifting.

Discussion

If you want to customize the validations that attachment_fu performs,

you can write you own custom validations rather than using the val-

idates_as_attachment convenience method. For example, if you wanted

to completely change the error messages, you could remove the call to

validates_as_attachment in the Cover model and add the following:

Download UploadImages/app/models/cover.rb

validate :attachment_valid?

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/helpers/albums_helper.rb
http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/views/albums/index.html.erb
http://media.pragprog.com/titles/fr_arr/code/UploadImages/app/models/cover.rb
http://www.pragprog.com/titles/fr_arr

18. UPLOAD IMAGES WITH THUMBNAILS 102

def attachment_valid?

unless self.filename

errors.add_to_base("No cover image file was selected")

end

content_type = attachment_options[:content_type]

unless content_type.nil? || content_type.include?(self.content_type)

errors.add_to_base("Cover image content type must an image")

end

size = attachment_options[:size]

unless size.nil? || size.include?(self.size)

errors.add_to_base("Cover image must be 500-KB or less")

end

end

Also See

Although the attachment_fu plug-in provides support for storing attach-

ments on Amazon’s S3 web service, I’ve found it better to do that in

an out-of-band process. See Recipe 42, Send Lightweight Messages, on

page 212 for how to hook into attachment_fu and upload files to S3 using

a queue server.

Snack Recipe 76, Preserve Files Between Deployments, on page 361

describes how to keep uploaded images stored on the filesystem from

disappearing between deployments.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_arr

