
Extracted from:

Deploying Rails Applications
A Step by Step Guide

This PDF file contains pages extracted from Deploying Rails Applications, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Ezra Zygmuntowicz, Bruce A. Tate, and Clinton Begin.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-0-5

ISBN-13: 978-09787392-0-1

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

P1.0 printing, April 2008

Version: 2009-6-3

http://www.pragprog.com

4 Getting a Watchdog

Chapter 6

Managing Your Mongrels
By now, you’ve located a good home and moved in. If you’ve chosen to

manage your own deployment and followed the steps in this book, you

have a single Mongrel running your application. Things will start hap-

pening very quickly now. The next step is to make sure your house is

running smoothly and that it is safe. Part of that job will be clustering

and configuring Mongrel. Next, you’ll want to get a watchdog to help

keep an eye on things. In this chapter, you’ll learn Mongrel configura-

tion, clustering, and monitoring.

6.1 The Lay of the Land

Clustering Mongrel is the first step to achieving better scalability with

Ruby on Rails. You’ll find the process amazingly easy to do. First, you’ll

build a customized configuration file that will let you predictably and

reliably restart Mongrel with an automated script. Then, you’ll use a

Mongrel cluster to launch more than one Mongrel so that your instal-

lation can share many simultaneous requests.

After you have a working cluster, you will place that cluster under

a monitoring process called Monit. This watchdog process will take

action when rogue Mongrel processes take up too much memory, stop

responding, or misbehave in other ways. The Mongrel cluster under

management from Monit is shown in Figure 6.1, on page 128.

6.2 Training Your Mongrels

You’ve seen how easy it is to use a Mongrel server in its default con-

figuration. In practice, you’re often going to need more flexibility than

TRAINING YOUR MONGRELS 127

the default configuration can provide. You will want to cluster your

Mongrels and probably run them as a service. Fortunately, configuring

Mongrel and even enabling Mongrel clusters is surprisingly easy. As

you recall, to start Mongrel, you want to run the following commands:

ezra$ cd /path/to/railsapp

ezra$ mongrel_rails start -d

That command starts a Mongrel daemon running in the background

on port 3000. It is just as simple to restart or stop the server. You’d

use mongrel_rails restart to restart and mongrel_rails stop to stop. But these

commands simply take your dog for a walk. You are ready to teach your

dog a few more advanced tricks. You can train your dog with much more

control through a variety of command-line options and configuration

files.

The mongrel_rails command-line tool contains explanations for all its

options. To access this embedded documentation, use the -h flag:

ezra$ mongrel_rails start -h

Usage: mongrel_rails <command> [options]

-e, --environment ENV Rails environment to run as

-d, --daemonize Whether to run in the background or not

-p, --port PORT Which port to bind to

-a, --address ADDR Address to bind to

-l, --log FILE Where to write log messages

-P, --pid FILE Where to write the PID

-n, --num-procs INT Number of processors active before clients denied

-t, --timeout TIME Timeout all requests after 100th seconds time

-m, --mime PATH A YAML file that lists additional MIME types

-c, --chdir PATH Change to dir before starting (will be expanded)

-r, --root PATH Set the document root (default 'public')

-B, --debug Enable debugging mode

-C, --config PATH Use a config file

-S, --script PATH Load the given file as an extra config script.

-G, --generate CONFIG Generate a config file for -C

--user USER User to run as

--group GROUP Group to run as

--prefix PATH URL prefix for Rails app

-h, --help Show this message

--version Show version

Keep in mind that this list will doubtlessly change as Mongrel grows

and improves. For a detailed explanation of every command-line option,

refer to the great online how-to.1 You can also find excellent documen-

tation at the Mongrel website.2

1. http://mongrel.rubyforge.org/docs/howto.html

2. http://mongrel.rubyforge.org/docs/

CLICK HERE to purchase this book now.

http://mongrel.rubyforge.org/docs/howto.html
http://mongrel.rubyforge.org/docs/
http://www.pragprog.com/titles/fr_deploy

TRAINING YOUR MONGRELS 128����
Operating System

Monit

Mongrel

Application

Source Repository

Application

Client

ApplicationApplication

Capistrano

Mongrel

Application

Mongrel

Application

Figure 6.1: Deployment map for scaling out

You can specify all these options on the command line each time you

start mongrel_rails, but if you need anything more than the most basic

configuration, flags will quickly get tedious. This is where the Mongrel

configuration file comes into play. The -G or --generate option will create

a config file for a given set of command-line flags. Once you have a

command line with all the options you desire, you can save them to disk

for later use. From the root of your Rails application, run the following

command:

ezra$ mongrel_rails start -G config/mongrel_7000.yml ←֓

-e production -p 7000 -d

** Writing config to "config/mongrel_7000.yml".

** Finished. Run "mongrel_rails -C config/mongrel_7000.yml"

** to use the config file.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

TRAINING YOUR MONGRELS 129

The previous command generates a file called mongrel_7000.yml in the

config/ directory of your Rails application:

ezra$ cat mongrel_7000.yml

:config_file:

:daemon: true

:cwd: /Users/ezra/railsapp

:includes:

- mongrel

:environment: production

:log_file: log/mongrel.log

:group:

:config_script:

:pid_file: log/mongrel.pid

:num_processors: 1024

:debug: false

:docroot: public

:user:

:timeout: 0

:mime_map:

:prefix:

:port: "7000"

:host: 0.0.0.0

That file has a lot of options. Thankfully, you don’t usually need all

these settings, so you can trim the file down quite a bit, like so:

:daemon: true

:cwd: /Users/ezra/railsapp

:environment: production

:log_file: log/mongrel.log

:pid_file: log/mongrel.pid

:docroot: public

:port: "7000"

:host: 0.0.0.0

Now you can make changes to your Mongrel configuration without typ-

ing them on the command line each time you want to start a Mongrel

server. To start Mongrel with your shiny new config file, use the -C flag:

ezra$ mongrel_rails start -C config/mongrel.yml

If you aren’t sure what options you want yet but you want to generate

a config file to start with, you can use the -G option without any other

arguments:

ezra$ mongrel_rails start -G config/mongrel.yml

When you run Mongrel on any Unix-like operating system, you can

control it with signals similar to WEBrick or FastCGI.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

TRAINING YOUR MONGRELS 130

The signals that Mongrel understands include the following:

TERM Stops Mongrel and deletes the PID file.

USR2 Restarts Mongrel (new process) and deletes the PID file.

INT Same as USR2. This command is a convenience because

Ctrl + C generates an interrupt signal and Ctrl + C is used in

debug mode.

HUP Internal reload. This command might not work well because

sometimes doing an internal reload will not reload all the code

in the system. You are safer if you do a real USR2 restart.

You can send these signals with the kill command:

ezra$ kill -HUP 27333

Configuring a Cluster

You’ve seen how to configure a single Mongrel instance. Your next step

is to build a more flexible configuration for a cluster. First, you need to

generate your mongrel_cluster.yml file. Let’s configure a cluster of three

Mongrels by running the following command from the root of your Rails

application directory:

ezra$ mongrel_rails cluster::configure -p 8000 ←֓

-e production -a 127.0.0.1 -N 3

Writing configuration file to config/mongrel_cluster.yml.

ezra$ cat config/mongrel_cluster.yml

port: "8000"

environment: production

address: 127.0.0.1

pid_file: log/mongrel.pid

servers: 3

You just built a minimal, but working, mongrel_cluster.yml file to run a

cluster. The port option is a little different from the port option you used

when you configured a single Mongrel instance. For a cluster, port spec-

ifies the first port number for your first Mongrel. Each subsequent Mon-

grel starts on the next port. These Mongrels will start on ports 8000,

8001, and 8002. You also specified the Rails environment for your Rails

application. Normally, you’ll run a single Mongrel in development mode

and a cluster for production. Mongrel will listen on the hostname or

IP address specified by the address option. The pid_file option specifies

the location for Mongrel’s PID files, and servers specifies the number

of Mongrels you want in the cluster. The previous file configures three

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

TRAINING YOUR MONGRELS 131

Mongrels running on ports 8000, 8001, and 8002. Next, customize this

config file a bit to take advantage of a few more attributes:

port: "8080"

cwd: /Users/ezra/railsapp

log_file: log/mongrel.log

environment: production

address: 127.0.0.1

pid_file: log/mongrel.pid

servers: 3

docroot: public

user: ezra

group: ezra

It’s a good idea to set cwd (current working directory) to the root of

your Rails application. I also added the log_file, docroot, user, and group

settings. Configuring the user and group will make Mongrel run under

that user and group even if you accidentally start it with sudo. It is

always a good idea to run web applications as a normal user instead of

root, just in case your application has a security breach. We know all

applications have security holes.

To start and stop your Mongrel cluster, you still use the mongrel_rails

command, but you gain a set of cluster commands to use with it. Try it

now from the root of your Rails app:

ezra$ mongrel_rails cluster::start

Starting 3 Mongrel servers...

ezra$ mongrel_rails cluster::restart

Stopping 3 Mongrel servers...

Starting 3 Mongrel servers...

ezra$ mongrel_rails cluster::stop

Stopping 3 Mongrel servers...

You’ve just tidied up your Mongrel configuration. Next, you can work

on running Mongrel as a service.

Running Mongrel as a Service

Using the mongrel_rails command from your local directory is fine for

playing around on your local machine or for staging environments. But

in a production environment, it’s nice to configure Mongrel more like

Apache and MySQL. The service configuration keeps things consistent.

The operating system will include Mongrel when automatically starting

services each time your server starts or restarts. The service configura-

tion works much like the Mongrel configuration you’ve already built.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

TRAINING YOUR MONGRELS 132

You’ll need to ensure that you have the mongrel_cluster gem installed

first. Once it is, you simply need to create a file at /etc/mongrel_cluster/

myapp.conf. I recommend you replace myapp with the name of your

application, but you can use anything you like. If you’re running mul-

tiple applications on one server, you can have multiple Mongrel cluster

configuration files. In the file, you configure your Mongrel cluster with

a few simple options. They are documented with inline comments in the

following example configuration file:

/etc/mongrel_cluster/myapp.conf

The user and group with which to run Mongrel

user: deploy

group: deploy

The location of our Rails application

and the environment to run within

cwd: /home/deploy/apps/myapp/current

environment: production

The number of servers in the cluster

servers: 4

The starting port

e.g. with 3 mongrels would bind ports 8000-8002

port: "8000"

The IP Addresses allowed to connect to Mongrel

If your web server proxy is separate from your app server,

put its IP address here instead of the localhost IP address

address: 0.0.0.0

The location of the process ID files relative to the rails app above

pid_file: log/mongrel.pid

With that configuration file in place, you can now start, restart, or stop

Mongrel using the following simple command from any current working

directory:

• mongrel_cluster_ctlstart will start a Mongrel cluster from scratch.

• mongrel_cluster_ctlrestart will restart a running Mongrel cluster.

• mongrel_cluster_ctlstop will stop a Mongrel cluster.

Now that you have your cluster of Mongrels happily running as a ser-

vice, you can turn your attention to managing the Mongrel server. The

Monit tool will let you handle scenarios where your Mongrels might run

out of memory or experience any other problems.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

CONFIGURING THE WATCHDOG 133

Starting Mongrel Cluster on Boot

You can get your Mongrel cluster to start at boot time, and it
should be fairly simple with most Linux distributions. The Mon-
grel cluster comes with a script ready to go. Installing it is sim-
ply a matter of finding it and copying it to the /etc/init.d/ direc-
tory. On my setup, the mongrel_cluster script file is located at the
following location: /usr/lib/ruby/gems/1.8/gems/mongrel_cluster-

<VERSION>/resources/mongrel_cluster.

Simply copy it to /etc/init.d/, and make it executable like this:

ezra$ sudo cp \
/usr/lib/ruby/gems/1.8/gems/mongrel_cluster-1.0.5/resources/\
mongrel_cluster \
/etc/init.d

ezra$ sudo chmod +x /etc/init.d/mongrel_cluster

Now your Mongrel cluster is configured to load on boot, just like
Apache and MySQL. As an added bonus, you can now also use
/etc/init.d/mongrel_cluster [start|restart|stop] anywhere you read
mongrel_cluster_ctl [start|restart|stop]. This is nice because it’s very
familiar to anyone who has used other service scripts like those
for Apache and MySQL.

You might need to make a few changes to the PATH variable
inside the script depending on your specific setup, Linux dis-
tribution, and hosting provider’s custom configuration. Check
with your host provider or the documentation for your Linux dis-
tribution in case yours is a little different.

6.3 Configuring the Watchdog

Monit is a simple utility used to manage files, processes, and directo-

ries on Unix. You can configure Monit to split your logs if they get too

big, start and stop processes, and also keep tabs on resources. Monit

can notify you if your memory use gets out of control and actually do

something about it. You may want Monit to restart one of the Mongrels

in your cluster or restart your nginx web server, if someone changes

your configuration file.

For starters, you’re going to use Monit to make sure your Mongrels

keep running at peak efficiency. You’ll need to do three things to get

the management process running:

• You will need to install the right version of mongrel_cluster. The

minimum version of Mongrel you will want to run is 1.0.1.1.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

CONFIGURING THE WATCHDOG 134

Building Monit on RHEL or CentOS

You need to install a few dependencies before you can get
Monit to build on Red Hat or CentOS distributions. Use rpm or
yum to search for and install the following packages: flex, bison,
and byacc. Once you have these prerequisites installed, you
can build Monit with the same instructions shown for other sys-
tems.

Earlier versions do not support the --clean option. This is impor-

tant because Mongrel 1.0+ will not start if there is a process iden-

tification (PID) file sitting on disk. So if your server crashes and

has to be rebooted, Mongrel tries to start up and fails because

there was a leftover PID file. The --clean option deletes leftover PID

files if they exist.

• You need a good mongrel_cluster.yml file. You’ve already built one

earlier in this chapter, and that one should work fine.

• You need a Monit configuration file, called mongrel.monitrc. This

configuration file will tell Monit what to do for each Mongrel on

your system.

The first order of business is to install Monit. Most Linux distribu-

tions will have a Monit package available in their package managers.

On Debian/Ubuntu you can run sudo apt-get install monit, and on Gen-

too you can run sudo emerge monit. If you cannot locate a package for

your preferred Linux, don’t sweat it, because you can build Monit from

source, like this:

ezra$ wget http://www.tildeslash.com/monit/dist/monit-4.9.tar.gz

...

ezra$ tar xzvf monit-4.9.tar.gz

...

ezra$ cd monit-4.9

ezra$./configure && make && sudo make install

...

Next up you need to install the correct version of mongrel_cluster. You

will want the latest version from RubyForge. It is important to clean up

older versions of mongrel_cluster if you had any installed:

$ sudo gem install mongrel_cluster ←֓

&& sudo gem cleanup mongrel_cluster

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

CONFIGURING THE WATCHDOG 135

After you’ve set that up, you are ready to configure Monit. I like to

create a separate configuration for each Mongrel cluster. You’ll add the

following configuration to mongrel.monitrc, which you’ll keep in Monit’s

directory, in our case, /etc/monit.d:

check process mongrel_deployit_5000

with pidfile /data/deployit/shared/log/mongrel.5000.pid

start program = "/usr/bin/mongrel_rails cluster::start -C ←֓

/data/deployit/current/config/mongrel_cluster.yml ←֓

--clean --only 5000"

stop program = "/usr/bin/mongrel_rails cluster::stop -C ←֓

/data/deployit/current/config/mongrel_cluster.yml ←֓

--only 5000"

if totalmem is greater than 110.0 MB for 4 cycles then restart

if cpu is greater than 80% for 4 cycles then restart

if 20 restarts within 20 cycles then timeout

group deployit

Notice that you will need a block for each process that you want Monit

to monitor. The previous configuration is for one Mongrel only. The first

directive, check_process, identifies a process to monitor. I have skipped

that directive in favor of the alternative with pidfile option that tells Monit

which process file to monitor. Recall that each Mongrel instance has

a file stored in the log/mongrel.port.pid file. The next two directives tell

Monit how to start and stop Mongrel. The last three directives tell Monit

what to do when certain pathological conditions exist. This configura-

tion will restart Mongrel instances if the memory exceeds a thresh-

old (110.0MB in the previous configuration) or the CPU is too busy

for a process. These directives also can take more extreme measures,

such as timing out and notifying administrators. Keep in mind that

all this is fully automated and requires notification only in extreme

circumstances.

Keep in mind that Monit will start your Mongrels with a completely

clean shell environment. This means your normal $PATH will not be set

up. You will need to use the fully qualified path to your mongrel_rails

command. In the previous config I used /usr/bin/mongrel_rails, but you

may need to adjust this path depending on where your system installed

the command. You can figure out where the command was installed like

this:

ezra$ which mongrel_rails

/usr/bin/mongrel_rails

A final configuration provides the general setup for Monit, including

the configuration for the mail server and alerts. This file is located at

/etc/monit/monitrc.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

CONFIGURING THE WATCHDOG 136

set daemon 30

set logfile syslog facility log_daemon

set mailserver smtp.example.com

set mail-format {from:monit@example.com}

set alert sysadmin@example.com only on { timeout, nonexist }

set httpd port 9111

allow localhost

include /etc/monit.d/*

This config is fairly straightforward, but there are a few things to note.

set daemon 30 tells Monit how often to check processes, in this case

every 30 seconds. I have found that 30 seconds is perfect for this set-

ting. You need to set your own SMTP server and email addresses for

alerts. The last two directives turn on Monit’s built-in HTTP server

on port 9111, making it viewable only from the localhost, and sets

/etc/monit.d to be the directory from which to include config files.

When you’re done, you can try a couple of commands. You can actually

start and stop Mongrel cluster instances through Monit. First you need

to make sure Monit has your latest configuration loaded:

ezra$ sudo /etc/init.d/monit restart

When Monit starts, it will automatically boot your Mongrels. Then you

can restart the Mongrels by their groups through Monit:

$ sudo monit restart all -g deployit

Or restart one single Mongrel by its name:

$ sudo monit restart mongrel_deployit_5000

To see the current status of your Mongrels, use the status command:

$ sudo monit status

The monit daemon 4.9 uptime: 4d 2h 27m

Process 'mongrel_deployit_5000'

status running

monitoring status monitored

pid 20467

parent pid 1

uptime 55m

childrens 0

memory kilobytes 50432

memory kilobytes total 50432

memory percent 12.8%

memory percent total 12.8%

cpu percent 0.0%

cpu percent total 0.0%

data collected Sun Jul 1 14:38:26 2007

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

CONFIGURING THE WATCHDOG 137

You may be asking yourself “Who monitors Monit?” That is a great ques-

tion. Monit is usually very stable, but certain conditions such as “out

of memory” can cause Monit itself to crash. If you want to prevent this

from happening, you can put Monit under the control of init. On a Linux

system, init is responsible for running all the scripts in /etc/init.d. init

can also respawn daemons if they die. The first step is to remove Monit

from the /etc/init.d scripts. Consult the documentation for your system

for information on how to remove a start-up script from the default

run level. On Gentoo, you would do it by running rc-update del monit.

The next step is to edit /etc/inittab and add the following lines near the

bottom of the file:

mo:345:respawn:/usr/bin/monit -Ic /etc/monitrc

m0:06:wait:/usr/bin/monit -Ic /etc/monitrc stop all

Now you can have init to watch Monit. The first step is to stop Monit.

Then you tell init to spawn Monit and keep it alive:

ezra$ sudo /etc/init.d/monit stop

ezra$ sudo telinit q

Now that Monit runs under init, the /etc/init.d/monit command will not

work to start and stop the Monit daemon. Instead, you will have to kill

Monit and let init pick it back up again, like this:

ezra$ sudo killall -9 monit

You will need some custom Capistrano tasks now that you are using

Monit to watch your Mongrels. When you use Monit, you do not need

to use mongrel_cluster/recipes in your deploy recipe. Instead, you will set

the Monit group of the Mongrels you are targeting with this line in your

deploy.rb file:

set :monit_group, 'deployit'

Now you need to add the following tasks to your deploy recipe:

desc <<-DESC

Restart the Mongrel processes on the app server by

calling restart_mongrel_cluster.

DESC

task :restart, :roles => :app do

restart_mongrel_cluster

end

desc <<-DESC

Start Mongrel processes on the app server.

DESC

task :start_mongrel_cluster , :roles => :app do

sudo "/usr/bin/monit start all -g #{monit_group}"

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

KEEPING FASTCGI UNDER CONTROL 138

desc <<-DESC

Restart the Mongrel processes on the app server by

starting and stopping the cluster.

DESC

task :restart_mongrel_cluster , :roles => :app do

sudo "/usr/bin/monit restart all -g #{monit_group}"

end

desc <<-DESC

Stop the Mongrel processes on the app server.

DESC

task :stop_mongrel_cluster , :roles => :app do

sudo "/usr/bin/monit stop all -g #{monit_group}"

end

Now you know how to use Monit to keep a leash on your Mongrels.

Monit can be a lifesaver for your production Rails applications, and I

highly suggest using it whenever you deploy Mongrels.

6.4 Keeping FastCGI Under Control

Our primary focus has been on Mongrel. I’m going to dedicate the rest

of the chapter to FastCGI. If you should find yourself deploying with

FastCGI, you’ll want to read the next few sections. Otherwise, feel free

to skip ahead to Section 6.5, Building in Error Notification, on page 140.

Zombie FastCGI Processes

During the dog days of summer in 2005, I noticed that one of my Rails

apps was running a little slower than expected. Confident in my debug-

ging abilities, I fired up my SSH client and logged into my shared server.

Almost immediately, the server kicked me out with an odd “resource

unavailable” error.

After three more tries with the same result, I emailed the customer sup-

port team. It turns out that I had fifty processes running, the maximum

allowed for any single user! Every one of those processes was a zombie,

aimlessly occupying my process allocation but unable to do anything

useful. Like a bad horror sequel, one of my Rails apps on a completely

different host had the same problem a few days later.

The Apache web server is famous for producing these zombies when

running with FastCGI, causing many developers to favor Mongrels or

nginx instead. The good news is that a few simple cron tasks can keep

zombies from getting out of hand, making the difference between a

smoothly running site and one that dies daily. I’ll discuss them in The

Reaper below.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

KEEPING FASTCGI UNDER CONTROL 139

The conclusion to the story is that the sysadmin at the shared host

killed the zombie processes, and things began working again. I learned

to start a daily cron task that cleans out zombies and gives my server

a fresh start. Some people restart their dispatch processes every single

hour. You will have to experiment with your specific situation and see

what works best.

The Reaper

The reaper is not a black-hooded messenger of doom; he is your best

friend. The reaper command reliably prunes back FastCGI processes.

Capistrano uses it to restart your Rails app after a fresh deployment.

You can also use it to restart processes on a regular schedule.

The reaper is a script you run on the command line. By default it

restarts FastCGI dispatch processes for your application only, so you

won’t disrupt other applications running under the same user account.

You can fire off other actions with the reaper as well:

• restart: Restarts the application by reloading both application and

framework code (the default). Send the USR2 signal to each dis-

patch.fcgi process belonging to the current application.

• reload: Reloads only the application, not the framework (like the

development environment). Reload sends the HUP signal.

• graceful: Marks all the processes for exit after the next request.

Graceful sends the TERM signal.

• kill: Forcefully exits all processes regardless of whether they’re cur-

rently serving a request. kill sends the -9 signal. Use this only if

none of the other signals is successful.

You can run the reaper without any arguments or request one of the

previous actions such as the following:

ezra$./script/process/reaper --action=graceful

In my experience, the defaults don’t work on most shared hosts because

their output doesn’t match the reaper’s expectations. The good news is

that you can send an extra argument to match the specific output of

your host.

Let me show you how I fine-tuned this on one of my shared hosting

accounts. First, I tried to run the dispatcher normally. Even though

I knew that there were several dispatch.fcgi processes running at that

very moment, the reaper couldn’t find them.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

BUILDING IN ERROR NOTIFICATION 140

ezra$./script/process/reaper

Couldn't find any process matching:

/data/deployit/releases/20060224192655/public/dispatch.fcgi

Reading through the reaper code revealed the exact command that the

reaper used to find the list of running processes. I called that command

manually:

ezra$ ps axww -o 'pid command'

PID COMMAND

4830 /usr/bin/ruby dispatch.fcgi

18714 /usr/bin/ruby dispatch.fcgi

2076 /usr/bin/ruby1.8 dispatch.fcgi

12536 -bash

5607 ps axww -o pid command

I could then see what was happening. The reaper was looking for the

full path to the dispatcher, but the ps command on my server returned

a shorter version of the current process list. Consequently, the reaper

could not find the full path, so I can’t restart this application indepen-

dently of the others running under that same user account. As config-

ured, the reaper was all or nothing!

Running the same command on my local Mac OS X machine shows

the entire path to the dispatch.fcgi script, as it should. A fact of shared

hosting is that you can’t control systemwide settings, so you may have

to adjust your scripts to match.

With this information in hand, I could send a more general argument

to restart all dispatch processes running under that user account in

order to keep things fresh and zombie-free:

ezra$./script/process/reaper --action=restart --dispatcher=dispatch.fcgi

Restarting [4830] /usr/bin/ruby dispatch.fcgi

Restarting [18714] /usr/bin/ruby1.8 dispatch.fcgi

Restarting [2076] /usr/bin/ruby1.8 dispatch.fcgi

6.5 Building in Error Notification

With a Mongrel cluster in place, your setup has greater scalability, and

you should be able to sustain minor failures. With Monit in place to

manage your Mongrel clusters, you have the capability to take preemp-

tive action when a single Mongrel cluster fails or when resources get

scarce.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

BUILDING IN ERROR NOTIFICATION 141

But most of the time, your failures will come from plain old human

error. If you want a good management story, you are going to have to

deal with your programmer’s mistakes. Usually, Rails errors will gen-

erate an application error, the dreaded 500 error page. With Ruby, it’s

fairly easy to intercept the default error behavior to, for example, send

email notifications. And that is exactly what the exception_notification

plug-in does.

You can read about the exception_notification plug-in at the Rails wiki

(http://wiki.rubyonrails.org/rails/pages/ExceptionNotification). To install it,

simply run the installation script like this:

ezra$ ruby script/plugin install exception_notification

Next, to build notification into a particular controller, include the error

notification module. I like to include error notification in application.rb

so I’ll get email notification when any user of any controller encounters

an error that I failed to handle correctly, like so:

class ApplicationController < ActionController::Base

include ExceptionNotifiable

...

end

Next, configure the email addresses that should get notified of Rails

exceptions. Put the notification in config/environment.rb:

ExceptionNotifier.exception_recipients = ←֓

%w(you@yourdomain.com another@yourdomain.com)

Now, if any error should occur, you’ll get an error notification like the

following:

A ActionView::TemplateError occurred in drives#edit_comment:

undefined method `title' for nil:NilClass

On line #5 of app/views/drives/edit_comment.rhtml

2: <%= error_messages_for 'gift' %>

3: <!--[form:drive]-->

4:

5: <h1><%= @drive.title %></h1>

6: <div>

7:

8: <table><tr>

#{RAILS_ROOT}/app/views/drives/edit_comment.rhtml:5:in ←֓

`_run_rhtml_47app47views47drives47edit_comment46rhtml'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:326:in ←֓

`compile_and_render_template'

CLICK HERE to purchase this book now.

http://wiki.rubyonrails.org/rails/pages/ExceptionNotification
http://www.pragprog.com/titles/fr_deploy

BUILDING IN ERROR NOTIFICATION 142

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:301:in ←֓

`render_template'

...

Request:

* URL: http://changingthepresent.org/drives/edit_comment/65?donate=true

* Parameters: {"donate"=>"true", "action"=>"edit_comment", ←֓

"id"=>"65", "controller"=>"drives"}

* Rails root: /home/deploy/importantgifts/current

Session:

* @write_lock: true

* @session_id: "875ce6f70cb9b8e9348a72147999303c"

* @data: {"flash"=>{}}

* @new_session: true

Environment:

* GATEWAY_INTERFACE : CGI/1.2

* HTTP_ACCEPT : */*

* HTTP_ACCEPT_ENCODING: gzip

* HTTP_CONNECTION : Keep-alive

* HTTP_FROM : googlebot(at)googlebot.com

* HTTP_HOST : changingthepresent.org

* HTTP_USER_AGENT : Mozilla/5.0 (compatible; ←֓

Googlebot/2.1; +http://www.google.com/bot.html)

* HTTP_VERSION : HTTP/1.1

* HTTP_X_FORWARDED_FOR: 66.249.72.161

* HTTP_X_TEXTDRIVE : BigIP

* PATH_INFO : /drives/edit_comment/65

* QUERY_STRING : donate=true

* REMOTE_ADDR : 66.249.72.161

* REQUEST_METHOD : GET

* REQUEST_PATH : /drives/edit_comment/65

* REQUEST_URI : /drives/edit_comment/65?donate=true

* SCRIPT_NAME : /

* SERVER_NAME : changingthepresent.org

* SERVER_PORT : 80

* SERVER_PROTOCOL : HTTP/1.1

* SERVER_SOFTWARE : Mongrel 1.0

* Process: 1620

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

BUILDING IN ERROR NOTIFICATION 143

* Server :

Backtrace:

On line #5 of app/views/drives/edit_comment.rhtml

2: <%= error_messages_for 'gift' %>

3: <!--[form:drive]-->

4:

5: <h1><%= @drive.title %></h1>

6: <div>

7:

8: <table><tr>

#{RAILS_ROOT}/app/views/drives/edit_comment.rhtml:5:in ←֓

`_run_rhtml_47app47views47drives47edit_comment46rhtml'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:326:in ←֓

`compile_and_render_template'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:301:in ←֓

`render_template'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:260:in ←֓

`render_file'

...

Voila! This email message is an actual email notification that helped

solve a production problem in the code at ChangingThePresent.3 The

email contains a full complement of debugging information, including

a full trace and back trace, the contents of the session, the offending

view code, and the full environment for the HTTP request.

You can configure a few other options as well. Configure the sender with

ExceptionNotifier.sender_address, and append a string to the subject line

(to help with email filters) with ExceptionNotifier.email_prefix. This plug-in

will send email notifications only when the address is not local. You

can configure which IP addresses should be considered as local with

ExceptionNotifier.consider_local.

With this solution, Rails will notify you whenever your application expe-

riences an exception. You can configure it to work well with your email

clients, and because it’s plugged directly into Rails, as long as Rails

does not fail completely and your network and email keep working,

you’ll get a notification.

3. http://ChangingThePresent.org

CLICK HERE to purchase this book now.

http://ChangingThePresent.org
http://www.pragprog.com/titles/fr_deploy

HEARTBEAT 144

6.6 Heartbeat

The exception_notification plug-in is a great way to understand, when

your application has errors, whether the errors are consistent or inter-

mittent. It’s not a complete management solution, though. For larger

or more critical production systems, you also need to verify that the

system is running at all.

A heartbeat service will tell you when your application fails. I find that

a simple script running on a separate host works better than cus-

tom solutions because it’s easy, infinitely customizable, and deployable

on any host with your scripting language. The following script detects

when one of four pages is down at ChangingThePresent:

Download managing_things/heartbeat.rb

#!/usr/local/bin/ruby

require 'net/smtp'

require 'net/http'

require 'net/https'

require 'uri'

urls = %w{

http://www.changingthepresent.org/

http://www.changingthepresent.org/nonprofits/show/23/

http://www.changingthepresent.org/causes/list/

https://www.changingthepresent.org/

}

from = 'system@importantgifts.org'

recipients = %w{development@changingthepresent.org}

errors = []

urls.each do |url|

begin

uri = URI.parse(url)

http = Net::HTTP.new(uri.host, uri.scheme == "https" ? 443 : nil)

http.use_ssl = (uri.scheme == "https" ? true : false)

http.start do |http|

request = Net::HTTP::Get.new(uri.path)

response = http.request(request)

case response

when Net::HTTPSuccess, Net::HTTPRedirection

else

raise "requesting #{url} returned code #{response.code}"

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_deploy/code/managing_things/heartbeat.rb
http://www.pragprog.com/titles/fr_deploy

CONCLUSION 145

rescue

error = "#{url}: #{$!}"

errors << error

puts error

end

end

unless errors.empty?

msg = "From: #{from}\n"

msg += "Subject: ChangingThePresent.org is down!\n\n"

msg += errors.join("\n")

puts "sending email to #{recipients.join(', ')}"

Net::SMTP.start('localhost', 25, 'localhost') do |smtp|

smtp.send_message(msg, from, recipients)

end

end

The four URLs are not haphazard. They represent a secure page, a

page-cached page, a fragment-cached page, and a standard dynamic

page. The admin team executes this script once every five minutes via

a cron job. The script notifies all the developers on the project via an

email address that is forwarded to all developers whenever the site is

down.

The script counts redirects and success as a successful contact. Any-

thing else is a failure. Timeouts will also trigger a notification.

6.7 Conclusion

The management strategies in this chapter don’t cost anything, but

they are surprisingly robust. Building repeatable Mongrel configura-

tions rather than command-line options is easy and enables consistent

clustering. Configuring your Mongrels in a cluster gives you good per-

formance and some failover. Clustering Mongrel is important because

of the Rails shared-nothing strategy.

Clustering is only the beginning of your managing strategy. To run pro-

duction Mongrels, you need information and control. By using Monit,

you get a watchdog that will automatically kill and restart any rogue

Mongrels. By using the various email notification features, the scripts

will notify the recipients of your choice when the server is down or when

anyone encounters a Rails error.

Still, our error recovery solutions are not yet complete. You will need a

better handle on monitoring resources and on performance before you

have a complete strategy. Read on.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_deploy

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Deploying Rails Applications’ Home Page

http://pragprog.com/titles/fr_deploy

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fr_deploy.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/fr_deploy
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fr_deploy
www.pragprog.com/catalog

