
Extracted from:

Enterprise Integration with Ruby
A Pragmatic Guide

This PDF file contains pages extracted from Enterprise Integration with Ruby, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 51

has many useful features (such as table inheritance) that we did not
cover here. Additionally, its capabilities differ from database system, to
database system so, for example, not all the features that are available
with MySQL are also available if you use DB2.

2.4 Lightweight Directory Access Protocol (LDAP)

We use directories in the real world all the time: telephone books,
lists of network accounts, address books, the domain name service
(DNS), and so on. Typically, directories are organized hierarchically—as
trees—and their entries are often read and rarely modified.

Implementing directories with relational database systems can be a bit
complicated. Even though many database vendors added tools for hier-
archical queries to their products, using them is still far from being
convenient. (Some vendors, including Oracle, even ship a separate
directory service that is based on their relational database product.)

Because of this, a standard for accessing directories was created as
part of the X.500 directory specification. It was called Directory Access X.500 directory

specification
Protocol (DAP). Unfortunately, it was both complex and complicated,

Directory Access Protocoland no one implemented it completely.

As a consequence, an easier standard was defined: the Lightweight
Directory Access Protocol (LDAP).17 This is the most widespread direc-
tory service in use today.

I’ll give a short introduction to LDAP in the rest of this section. If you’re
already familiar with LDAP you can safely skip it and go directly to
Section 2.4, An Address Book for PragBouquet Customers, on page 55.

Simply put, LDAP is to directories what SQL is to relational databases.
It helps you to model real-world entities as directory entries (not as directory entries

tables) that have different attributes. Attributes have a name, a type,
and a multidimensional value; i.e., attributes can have a list of values.
Every directory entry (from now on we call them entries for short) has
at least one attribute called objectclass that determines which attributes
the entry has.

In LDAP you put all object classes and their according attribute type
definitions belonging to a particular problem domain into a schema. schema

17http://www.faqs.org/rfcs/rfc2251.html

CLICK HERE to purchase this book now.

http://www.faqs.org/rfcs/rfc2251.html
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 52

The core schema, for example, contains the definition of the residential-

Person object class:

objectclass (

2.5.6.10

NAME 'residentialPerson'

DESC 'RFC2256: an residential person'

SUP person

STRUCTURAL

MUST l

MAY (

businessCategory $ x121Address $ registeredAddress $

destinationIndicator $ preferredDeliveryMethod $

telexNumber $ teletexTerminalIdentifier $ telephoneNumber $

internationaliSDNNumber $ facsimileTelephoneNumber $

preferredDeliveryMethod $ street $ postOfficeBox $

postalCode $ postalAddress $ physicalDeliveryOfficeName $

st $ l

)

)

This looks similar to SQL’s create table statement, doesn’t it? The biggest
difference is that the type of the attributes (SQL calls them columns)
are defined separately. The meaning of the different declarations and
keywords is as follows:

• In LDAP, every definition begins with an object identifier (OID) that object identifier

uniquely identifies the object class or attribute type worldwide.
OIDs are numbers separated by periods and have to be registered
at the Internet Assigned Numbers Authority (IANA).18 Private OIDs
always start with 1.3.6.1.4.

• Object classes have a name that is defined with the NAME keyword.
To prevent name clashes, you should add a unique prefix or post-
fix to your own object class and attribute type names.

• DESC lets you give a human-readable description of the object class.

• The SUP keyword points to the superclass of an object class. LDAP
is object oriented, and an object class can inherit the attributes of
another class. Every class has at least one superclass called top.

• An LDAP class can be a STRUCTURAL, AUXILIARY, or ABSTRACT class.
Abstract classes are classes that are meant only to be base classes
(such as top). Classes meant to define completely new object hier-

18http://www.iana.org/cgi-bin/enterprise.pl

CLICK HERE to purchase this book now.

http://www.iana.org/cgi-bin/enterprise.pl
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 53

archies are declared as STRUCTURAL. AUXILIARY classes let you “mixin”
attributes into existing structural classes.

• MUST expects a dollar-separated list which contains the classes’
mandatory attributes.

• MAY expects a dollar-separated list containing the classes’ optional
attributes.

Attribute types, such as the telephoneNumber attribute we have used in
the residentialPerson object class, are defined as follows:

attributetype (

2.5.4.20

NAME 'telephoneNumber'

DESC 'RFC2256: Telephone Number'

EQUALITY telephoneNumberMatch

SUBSTR telephoneNumberSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32}

)

Like an object class, the attribute type definition starts with an OID.
NAME and DESC have the same meaning as in the object class definition.
The remaining keywords have the following meaning:19

• EQUALITY specifies which algorithm should be used to test whether
two telephoneNumber attributes are equal. This is a little bit more
sophisticated than a simple string comparison, because telephone
numbers often contain characters only for better readability. For
example, “0049 (0) 1234 / 56 78” and “004912345678” are com-
pletely different strings, but they represent the same telephone
number. The LDAP standard defines a lot of equality algorithms.

• SUBSTR lets you define which algorithm should be used to check
whether a particular telephoneNumber number attribute contains a
particular substring.

• The SYNTAX element refers to the OID of the attributes’ syntax.
LDAP defines a syntax for many types that are used often such
as integers, strings, timestamps, and even JPEG files.

It’s not difficult to build your own object classes and attribute types, but
it’s certainly a good idea first to check whether the object class you need
has not already be defined. LDAP specifies dozens of base classes for

19To learn about attribute types, you have to read RFC 2252:
http://www.faqs.org/rfcs/rfc2252.html.

CLICK HERE to purchase this book now.

http://www.faqs.org/rfcs/rfc2252.html
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 54

all the elements you typically find in directories: person, residentialPerson,
organizationalPerson, and so on. Often it’s sufficient to derive a new class
from an existing one, adding just a few attributes. For example, if you
need to store address data containing the geographical position of the
address, you can derive a new geoPerson class from residentialPerson, adding
longitude and latitude attributes.

That’s all not too different from what you do with relational databases
(except for the inheritance features), and you could use LDAP to store
nonhierarchical data. But usually LDAP repositories represent hierar-
chical trees of entries belonging to one or more object classes.

Each entry has a unique name, the distinguished name (DN). The DN distinguished name

consists of several relative distinguished names (RDN). An RDN is a relative distinguished

nameslist of attribute name/value pairs that are separated by a comma or a
semicolon. For example, telephoneNumber=004912345678 could be an RDN
with the attribute name telephoneNumber and the value 004912345678. A
more precise RDN could be

cn=Maik Schmidt,telephoneNumber=004912345678

This additionally specifies the cn (“common name”) attribute of a person

object.

As we all know, a picture is worth approximately 2
10 words, so let’s

have a look at Figure 2.3, on page 59. The root entry of the directory in root entry

this figure has a DN consisting of two RDNs: dc=pragbouquet,dc=com.20

It automatically becomes an RDN for all entries in the tree. The deeper
you go down the hierarchy, the longer the DNs and RDNs get. For
example, the distinguished names of all entries on the left side contain
the relative distinguished name uid=4711,dc=pragbouquet,dc=com. Simply
put, DNs specify leaves, and RDNs specify subtrees.

LDAP allows you to read, modify, and delete subtrees and single nodes
of your directories. In relational databases you specify particular rows
with a WHERE clause in your SQL statements. In LDAP you use RDNs
and DNs to do so.

We mentioned before that directory entries are often read and rarely
updated. Hence, the LDAP standard defined a technology that makes
an initial import of directory entries easy: the LDAP Data Interchange

Format (LDIF).21 It’s a simple textual file format for describing directory LDAP Data Interchange

Format

20dc stands for domain component. dc is a mandatory attribute for entries belonging
to the organization object class.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 55

entries. Here’s an LDIF representation of the root entry and one of its
descendants of our sample directory:

First (root) entry: the PragBouquet organization.

dn: dc=pragbouquet,dc=com

objectclass: dcObject

objectclass: organization

o: PragBouquet

dc: pragbouquet

Second entry: an address book for customer 4711.

dn:uid=4711,dc=pragbouquet,dc=com

objectclass: top

objectclass: person

objectclass: uidObject

uid: 4711

cn: John Jackson

sn: Jackson

description: Address book of John Jackson.

LDIF is line oriented. Comment lines start with a # character. All the
other lines represent an attribute and its corresponding value, sep-
arated by a colon. If an attribute has more than one value, it may
appear several times. Every LDAP server comes with a bunch of utili-
ties for modifying an existing repository and for importing .ldif files.

Although a lot of directory services work more or less invisibly, touched
only by your system administrators, chances are good that you’ll have
to integrate with one someday, because LDAP is gaining popularity
among application developers, too. In the following sections we’ll show
how to manipulate a directory service based on OpenLDAP with Ruby.

An Address Book for PragBouquet Customers

The marketing department made yet another astonishing observation:
there are people who celebrate their birthdays every year! Wouldn’t it
be great if PragBouquet customers could easily send them a bouquet
on those birthdays? And wouldn’t it be nice if PragBouquet customers
could be spared the extra work of entering the same address data for
the recipients, over and over again?

So, marketing came up with an ingenious idea. All PragBouquet cus-
tomers should have their own address book where they can store the
addresses of the people they’ve ever sent a bunch of flowers.

21http://www.faqs.org/rfcs/rfc2849.html

CLICK HERE to purchase this book now.

http://www.faqs.org/rfcs/rfc2849.html
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 56

The web shop team said that it’s not a big deal to create a user interface
for the address book, but they asked you to create the corresponding
backend services. Fortunately, they want to give Ruby on Rails22 a try,
so you can use Ruby for implementing the address book logic.

When thinking about things like address books, LDAP immediately
comes to mind, so you decide to implement the address book as a direc-
tory service using the OpenLDAP23 system. It has everything you need,
it’s available for free, it works on top of several database systems, and
it ships with several utilities for reading and manipulating data.

For the development phase we install an OpenLDAP server on our local
machine and configure it using this configuration file:

File 39 Line 1 include /sw/etc/openldap/schema/core.schema

-

- database bdb

- suffix "dc=pragbouquet,dc=com"

5 rootdn "cn=root,dc=pragbouquet,dc=com"

- rootpw secret

- directory /sw/var/openldap-data

- index objectclass eq

That is really all we need to get our address book application up and
running. We have to include the core schema, because we’ll need some
of its definitions (person, residentialPerson, and uidObject). In addition, we
have to define the database we want to use (the LDAP standard does
not define how the directory is to be stored). It’s a Berkeley DB (bdb)24

with all data files stored in directory /sw/var/openldap-data. The distin-
guished name of our root node (needed for administrative purposes
only) is cn=root,dc=pragbouquet,dc=com. We have to authenticate ourselves
using the nearly unbreakable plain-text password secret whenever we
want to write to the database.

LDAP allows you to create a sophisticated directory layout for address
books comprising lots of organizational units or even define your own
object classes, but we will use a more modern and simpler approach.
We will organize our directory in a flat way using domain components
and uid attributes.25

22http://www.rubyonrails.com
23http://www.openldap.org
24http://sleepycat.com
25http://www.faqs.org/rfcs/rfc2377.html

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/db/ldap/slapd.conf
http://www.rubyonrails.com
http://www.openldap.org
http://sleepycat.com
http://www.faqs.org/rfcs/rfc2377.html
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 57

Before diving into Ruby code, let’s take a closer look at the directory
structure and then initialize our repository with some sample data
stored in init.ldif:

File 34 Line 1 # Create the PragBouquet organization.

- dn: dc=pragbouquet,dc=com

- objectclass: dcObject

- objectclass: organization

5 o: PragBouquet

- dc: pragbouquet

-

- # Create an address book for customer 4711.

- dn:uid=4711,dc=pragbouquet,dc=com

10 objectclass: top

- objectclass: person

- objectclass: uidObject

- uid: 4711

- cn: John Jackson

15 sn: Jackson

- description: Address book of John Jackson.

-

- # Create the first address book entry for customer 4711.

- dn:cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com

20 objectclass: top

- objectclass: residentialPerson

- cn: Marge Jackson

- sn: Jackson

- l: Springfield

25 st: IL

- street: Evergreen Terrace 42

- postalCode: 62701

- description: Don't forget our wedding anniversary!

-

30 # Create the second address book entry for customer 4711.

- dn:cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com

- objectclass: top

- objectclass: residentialPerson

- cn: P.H. Beans

35 sn: Beans

- l: Springfield

- st: MO

- street: Nuclear Powerplant Road 1

- postalCode: 65801

40 description: My boss.

-

- # Create an address book for customer 0815.

- dn:uid=0815,dc=pragbouquet,dc=com

- objectclass: top

45 objectclass: person

- objectclass: uidObject

- uid: 0815

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/db/ldap/init.ldif
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 58

- cn: Max Mustermann

- sn: Mustermann

50 description: Address book of Max Mustermann.

-

- # Create the first address book entry for customer 0815.

- dn:cn=Jane Doe,uid=0815,dc=pragbouquet,dc=com

- objectclass: top

55 objectclass: residentialPerson

- cn: Jane Doe

- sn: Doe

- street: 125 N. Arbitrary Street

- st: DC

60 l: Washington

- postalCode: 20500

- description: My Sweetheart!

The previous LDIF file should be nearly self-explanatory (comment lines
start with a # character). Every entry has a distinguished name (DN). distinguished name

All its other attributes are listed as “key: value” pairs. All attributes are
potentially multidimensional, so they may appear several times.

Note that we use the attribute uid to structure our address books. Every
web shop user is identified by a particular identifier (it might be a cus-
tomer ID, an e-mail address, or something similar). Whenever a cus-
tomer creates a completely new address book (not an address book
entry), a new directory entry for her user ID will be added. The direc-
tory belonging to our init.ldif file looks like Figure 2.3, on the next page
(we have left out most attributes for brevity).

Let’s start our server and load the initial data using the ldapadd com-
mand:

mschmidt:~/ldap> sudo slapd

Password:

mschmidt:~/ldap> ldapadd -c -x -D "cn=root,dc=pragbouquet,dc=com" \

> -W -f init.ldif

Enter LDAP Password:

adding new entry "dc=pragbouquet,dc=com"

adding new entry "uid=4711,dc=pragbouquet,dc=com"

adding new entry "cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com"

adding new entry "cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com"

adding new entry "uid=0815,dc=pragbouquet,dc=com"

adding new entry "cn=Jane Doe,uid=0815,dc=pragbouquet,dc=com"

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 59

Figure 2.3: Address Book Layout

Our .ldif file didn’t contain any errors, and six new entries have been
created.

OpenLDAP’s ldapsearch command allows us to query the repository. It
prints its results in LDIF. To become a bit more familiar with our direc-
tory, let’s print the address book of the user identified by uid 4711:

mschmidt:~/ldap> ldapsearch -x -s one \

> -b 'uid=4711,dc=pragbouquet,dc=com' \

> '(objectclass=*)'

extended LDIF

#

LDAPv3

base <uid=4711,dc=pragbouquet,dc=com> with scope one

filter: (objectclass=*)

requesting: ALL

#

Marge Jackson, 4711, pragbouquet.com

dn: cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com

objectClass: top

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 60

objectClass: residentialPerson

cn: Marge Jackson

sn: Jackson

l: Springfield

st: IL

street: Evergreen Terrace 42

postalCode: 62701

description: Don't forget our wedding anniversary!

P.H. Beans, 4711, pragbouquet.com

dn: cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com

objectClass: top

objectClass: residentialPerson

cn: P.H. Beans

sn: Beans

l: Springfield

st: MO

street: Nuclear Powerplant Road 1

postalCode: 65801

description: My boss.

search result

search: 2

result: 0 Success

numResponses: 3

numEntries: 2

Obviously, everything is up and running. Our query returned the two
address book entries that belong to the customer identified by user ID
4711. But what are those options we passed to the command?

• -x uses the simple authentication mechanism. In our case the
communication is unencrypted, and no password is needed.

• -s one searches the directory “one level beyond base,” so it returns
all entries below our search base, but not the base itself. -s base

would have returned the base object only, and -s sub would have
returned the base object and all its descendants.

• -b ’uid=4711,dc=pragbouquet,dc=com’ sets the search base to the dis-
tinguished name uid=4711,dc=pragbouquet,dc=com, so that all entries
of the subtree belonging to this DN will be returned.

• (objectclass=*) specifies a filter for the entries to be returned. The
(objectclass=*) filter is comparable to SQL’s SELECT * statement and
selects all entries no matter what attributes they have. If we were
interested in entries from Illinois only, we could have set the filter
to (st=IL).

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 61

In the following sections we’ll see how to manipulate our repository with
Ruby.

Ruby/LDAP

The Ruby/LDAP26 library was initially created by Takaaki Tateishi and
is currently maintained by Ian Macdonald. It supports all LDAP clients
that comply with the LDAP Application Program Interface.27 You can
use Ruby/LDAP to interface with OpenLDAP, Netscape, and ActiveDi-
rectory, among others.

As a first exercise we’ll try to read John Jackson’s address book. It
should not be too surprising that accessing a directory service looks
similar to accessing a relational database system:

File 33 Line 1 require 'pp'

- require 'ldap'

- include LDAP

-

5 begin

- connection = Conn.new('127.0.0.1', LDAP_PORT)

- connection.set_option(LDAP_OPT_PROTOCOL_VERSION, 3)

- connection.bind do

- base_dn = 'uid=4711,dc=pragbouquet,dc=com'

10 scope = LDAP_SCOPE_ONELEVEL

- filter = '(objectClass=*)'

- connection.search(base_dn, scope, filter) do |entry|

- pp entry.to_hash

- end

15 end

- rescue Exception => ex

- puts ex

- end

This prints the following:

{"cn"=>["Marge Jackson"],

"st"=>["IL"],

"l"=>["Springfield"],

"sn"=>["Jackson"],

"description"=>["Don't forget our wedding anniversary!"],

"postalCode"=>["62701"],

"street"=>["Evergreen Terrace 42"],

"objectClass"=>["top", "residentialPerson"],

"dn"=>["cn=Marge Jackson,uid=4711,dc=pragbouquet,dc=com"]}

{"cn"=>["P.H. Beans"],

26http://ruby-ldap.sourceforge.net
27http://www.faqs.org/rfcs/rfc1823.html

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/db/ldap/first_access.rb
http://ruby-ldap.sourceforge.net
http://www.faqs.org/rfcs/rfc1823.html
http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 62

"st"=>["MO"],

"l"=>["Springfield"],

"sn"=>["Beans"],

"description"=>["My boss."],

"postalCode"=>["65801"],

"street"=>["Nuclear Powerplant Road 1"],

"objectClass"=>["top", "residentialPerson"],

"dn"=>["cn=P.H. Beans,uid=4711,dc=pragbouquet,dc=com"]}

First, we create a new connection to the LDAP service by calling the
method LDAP::Conn.new(host='localhost', port=LDAP_PORT). We then set the LDAP_OPT_PROTOCOL_VERSION

option, because we’ve set up an LDAPv3 service (it’s OpenLDAP’s default).

In line 8 we bind our connection object to the server. The real work
is performed in the code block we pass to the bind(dn=nil, password=nil,

method=LDAP_AUTH_SIMPLE) method. The heart of our “program logic” is
the search() method. It expects the following parameters:

1. base_dn contains the base DN of the subtree to search in.

2. scope defines the search scope; one of: LDAP_SCOPE_ONELEVEL, LDAP_SCOPE_SUBTREE,
or LDAP_SCOPE_BASE.

In our example we have used LDAP_SCOPE_ONELEVEL, which means
“one level beyond base.” We are not interested in the base object
(the address book owner) itself.

If we had set the scope to LDAP_SCOPE_SUBTREE the program would
have printed the entry for the address book owner, too:

{"cn"=>["John Jackson"],

"sn"=>["Jackson"],

"uid"=>["4711"],

"description"=>["Address book of John Jackson."],

"objectClass"=>["top", "person", "uidObject"],

"dn"=>["uid=4711,dc=pragbouquet,dc=com"]}

...

LDAP_SCOPE_BASE returns only the base object (the address book
owner in our case).

3. filter contains the LDAP search filter to be used.

4. The attributes array contains the name of the attributes which will
be returned. If it is empty or nil (the default), all attributes are
returned.

5. The attributes_only flag indicates whether only the names of the attributes
should be returned (true). When it is set to false (the default), it
returns both names and values.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 63

6. seconds specifies the seconds portion of the search timeout. It
defaults to 0. If either this parameter or the useconds parameter
is greater than 0, the timeout mechanism will be activated.

7. useconds specifies the microseconds portion of the search time-
out. It defaults to 0. If this parameter or the seconds parameter
is greater than 0, the timeout mechanism will be activated. To set
a timeout of 2.5 seconds, set seconds to 2 and useconds to 500.

8. sort_attribute specifies the attribute by which to sort the search result
entries. If no sort attribute is specified (the default), the order of
the result entries is unpredictable.

9. sort_proc may contain a code block that is used for sorting the
entries returned by the server. It defaults to nil, so the order of
the result entries is unpredictable.

search() is an iterator. It expects a code block that gets passed the cur-
rent entry as an LDAP::Entry object. In line 13 we turn these objects into
hashes and print them, nicely formatted.

Reading LDAP entries seems to be fairly easy. Let’s try to create new
ones now. First let’s add an empty address book for Jane Doe (she is
already a member of Max Mustermann’s address book, but that doesn’t
matter, because for us they are two different customers):

File 32 Line 1 User = Struct.new(:uid, :forename, :surname)

- class AddressBook

- BASE_DC = 'dc=pragbouquet,dc=com'

-

5 attr_reader :user

-

- def initialize(connection, user)

- @connection, @user = connection, user

- end

10

- def AddressBook.create(connection, user)

- cn = user.forename + ' ' + user.surname

- adr_book = []

-

15 [

- ['objectclass', %w(top person uidObject)],

- ['uid', [user.uid]],

- ['cn', [cn]],

- ['sn', [user.surname]],

20 ['description', ['Address book of ' + cn]]

-].each do |attr, values|

- adr_book << LDAP.mod(LDAP_MOD_ADD, attr, values)

- end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/db/ldap/addressbook.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Enterprise Integration with Ruby

pragmaticprogrammer.com/titles/fr_eir

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/fr_eir.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_eir
www.pragmaticprogrammer.com/catalog

