
Extracted from:

Enterprise Integration with Ruby
A Pragmatic Guide

This PDF file contains pages extracted from Enterprise Integration with Ruby, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 4

Low-Ceremony Distributed
Applications

Few technologies have changed the IT landscape the way networks
have. Today networks are ubiquitous. Some key players claim that
the network is the computer. Think about it for a moment: when was
the last time you switched on your computer and did not immediately
connect to the Internet? When was the last time you started your office
PC and did not log in to a server using ssh or telnet?

Yes, it’s true: networks have changed the way we think about comput-
ers significantly. They’ve changed the way we think about applications,
too. Nowadays, even small applications often depend on distributed
architectures where parts of a program are made available using net-
work technologies.

That’s obvious on the Internet, where you can freely use services offered
by Amazon.com or Google. By sending simple HTTP requests, you get
back information about a book, or you can search for news about your
favorite football team.

Big companies in the banking or telecommunications business were the
first to adapt to the distributed applications paradigm. Because these
companies often are spread across different continents, they were moti-
vated to find ways to implement a feature or a function only once and
to reuse it wherever possible. Today it’s so easy to implement interpro-
cess communication that nearly every company can benefit from using
the technology.

“I’D RATHER USE A SOCKET” 146

You do not have to use heavyweight industry standards such as SOAP
or CORBA to make your processes talk to each other. In this chapter
we’ll show you how to use plain sockets and pure HTTP to separate
concerns and to distribute business logic across process boundaries.

4.1 “I’d Rather Use a Socket”

During a conference in 2003 someone asked Robert C. Martin about
the future of SOAP. After listening to the answers of his panelists, Uncle
Bob replied, “I’d rather use a socket.”1 He is right: more often than not
it’s sufficient to use some plain text files and a socket instead of huge
databases and complex middleware. So, let’s start by looking at this
simple approach.

Using plain sockets in an efficient and platform-independent manner
isn’t trivial; handling multithreading issues and the like can become
fairly complicated. If you’re really interested in the nitty-gritty details
of socket programming, look at Unix Network Programming [Ste98] and
the appendix of Programming Ruby [TFH05]. Fortunately, a few off-the-
shelf solutions are available in Ruby’s standard distribution.

Ruby comes with a class called GServer that helps in the creation of
generic TCP servers. Written by John W. Small, GServer deals with
stuff such as connection handling and distributing requests to different
threads, leaving you to implement the business logic. The unavoidable
echo server example that sends back everything it gets looks like this:

File 58 Line 1 require 'gserver'

-

- class Parrot < GServer

- def initialize(host = 'localhost', port = '3333')

5 super(port, host)

- end

-

- def serve(client)

- text = client.gets

10 client.puts(text)

- end

- end

-

- lora = Parrot.new

15 lora.start

- lora.join

1http://www.artima.com/weblogs/viewpost.jsp?thread=4846

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/echosrv.rb
http://www.artima.com/weblogs/viewpost.jsp?thread=4846
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 147

On line 3 we derive our class Parrot from GServer, initializing it on line
5. The serve(client) method gets called whenever a client connects to our
server. After reading what the client has to say, it sends it back as
an echo. As you might have guessed already, start() starts the server,
and the join() method ensures that all running threads finish their work
before shutting down the server. Here we have a recording from a live
performance:

mschmidt:/tmp> telnet localhost 3333

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ Do you wanna have a cookie

⇒ Do you wanna have a cookie

Connection closed by foreign host.

mschmidt:/tmp>

The PragBouquet Status Monitor

Because building a server with GServer is so easy, we will try to solve
a problem that has been around for a long time now at PragBouquet.
Nearly every application running at PragBouquet writes a log file, often
used for troubleshooting.

Unfortunately, not all of them (to be exact, no two of them) use the
same format, and the files are scattered across several file systems.
Even if you’re lucky and eventually find the file that should contain the
information you need to resolve a trouble ticket initiated by one of your
best (and probably most choleric) customers, chances are good that it
has been overwritten already and no backup is available.

To overcome this situation we will create a status monitor, a TCP server
whose only purpose is to centrally store messages sent by PragBouquet
applications. Each message belongs to a certain application and is
tagged with a severity level (warn, error, fatal).

You might be wondering “Hey, why rewrite syslogd?” but our little server
differs from syslogd in a lot of ways: it’s used exclusively by PragBouquet
applications, we can decide where and how to store our log messages,
special actions can be triggered for certain log levels, and it’s platform
independent—it will run on Unix boxes as well as on Windows PCs.

Release candidate 1 of status monitor V0.0.1b writes messages only to
STDOUT. It looks like this:

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 148

File 74 Line 1 require 'logger'

- require 'gserver'

-

- class StatusMonitor < GServer

5 def initialize(host = '127.0.0.1', port = '3333')

- super(port, host)

- @level_map = {

- 'w' => 'warn', 'e' => 'error', 'f' => 'fatal'

- }

10 @logger = Logger.new(STDOUT)

- end

-

- # Expects CSV data in the following format:

- # level,application,message.

15 def serve(client)

- level, app, msg = client.readline.chomp.split(',', 3)

- if @level_map.has_key?(level)

- @logger.send(@level_map[level], "#{app}: #{msg}")

- client.puts('0')

20 else

- client.puts('1')

- end

- end

- end

25 sm = StatusMonitor.new

- sm.start

- sm.join

Let’s test it using good old telnet:

mschmidt:/tmp> telnet localhost 3333

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ f,billing,Lost connection to payment gateway.

⇒ 0

Connection closed by foreign host.

mschmidt:/tmp>

Our request has been successful (0 was returned). The corresponding
server output looks like this:

F, [2005-09-03T16:32:03.952707 #1124] FATAL -- : billing: \

Lost connection to payment gateway.

Line 18 shows a nice Ruby trick; it dynamically invokes a method on
our logger object using send(symbol, [, args...]) (to read more about the Logger

class, see Section 6.2, Logging, on page 260).

By the way, if you don’t want to test your GServer objects using old-
fashioned manual prodding with telnet, you can easily use ordinary unit

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 149

tests, too. Thanks to the magic of duck typing (see the sidebar, on the
next page), you can pass any object to the serve() method that responds
to the readline() and puts() methods.StringIO works well for this sort of task:

File 68 Line 1 require 'test/unit'

- require 'stringio'

- require 'status_monitor'

-

5 class StatusMonitorTest < Test::Unit::TestCase

- def setup

- @server = StatusMonitor.new

- end

-

10 def test_empty_string

- result = simulate_request("\n")

- assert_equal('1', result)

- end

-

15 def test_invalid_level

- result = simulate_request("x,foo,invalid level\n")

- assert_equal('1', result)

- end

-

20 def test_normal_case

- result = simulate_request("e,foo,normal case\n")

- assert_equal('0', result)

- end

-

25 def simulate_request(request)

- client = StringIO.new(request)

- @server.serve(client)

- client.string[request.size - 2 .. -2]

- end

30 end

This produces the following:

Loaded suite sm_test

Started

..E, [2005-10-14T08:00:54.960679 #374] ERROR -- : foo: normal case

.

Finished in 0.012851 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

For the unit tests, we’ve initialized StringIO objects with messages that
potential clients could send to the status monitor. The Status Monitor’s
serve() method doesn’t care what class its clients belong to and happily
reads requests from a StringIO object and writes results to it.

The main work is done by the simulate_request() method. This calls the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sm_test.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 150

Duck Typing

Ruby is an object-oriented language. Where there are objects,
classes and types are usually not far away. However, in con-
trast to Java or C++ programs, Ruby programs are not cluttered
with type declarations. In Ruby, the type of variables, methods,
and method parameters do not have to be explicitly declared.
Despite this, all Ruby objects have a certain type.

However, when you’re programming in a dynamic language,
you soon realize that the most important question about a par-
ticular object is normally not “What’s its class, and what are all
the methods it responds to?” but instead “Does the object at
hand respond to foo()?”

That’s where the duck analogy comes from: if it walks like a
duck and talks like a duck, then it will be treated as if it is a
duck. No matter if it actually is one or not.

This situation is not uncommon even in apparently statically
typed languages. For example, Java programmers expect
every object to have a toString() method. In Java, this is
because all objects are derived from the omnipresent Object

class. The implementation is different, but the principle is the
same: you want a particular object to respond to a certain
message; its class doesn’t matter much to you.

Our implementation of the GServer’s serve(client) method doesn’t
care about client’s class: it doesn’t declare its type, and it
doesn’t check whether it actually is some kind of TCP socket. It
expects client to respond only to methods called readline() and
puts(text).

serve() method, passing it a StringIO object. To read the result on line 28,
we have to ignore the message that is still in the StringIO object, and we
have to ignore the line feed the server sends at the end of the message.

Status Monitor Clients

The biggest problem with servers is that they are totally useless without
a client. In our case, we have to create one for every programming lan-
guage PragBouquet uses. Although this may seem like a lot of redun-
dancy, it’s always a good idea to provide programmers with the highest
degree of flexibility. If there is no status monitor client library for Java,

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 151

they will not use it (the status monitor, of course. Not Java). If you
think the status monitor is a Good Thing and you want your colleagues
to use it, then you have to make it as painless as possible to do so.

Currently, there are not many Ruby applications in the PragBouquet
environment, but we want to be prepared. Feeding our status monitor
from Ruby programs can be accomplished using class TCPSocket:

File 78 Line 1 require 'socket'

-

- class StatusMonitorClient

- WARN = 'w'

5 ERROR = 'e'

- FATAL = 'f'

-

- def initialize(host, port)

- @sm = TCPSocket.new(host, port)

10 end

-

- def warn(app, msg) log(WARN, app, msg); end

- def error(app, msg) log(ERROR, app, msg); end

- def fatal(app, msg) log(FATAL, app, msg); end

15 def terminate() @sm.close; end

-

- private

-

- def log(level, app, msg)

20 @sm.puts [level, app, msg].join(',')

- @sm.readline

- end

- end

At the heart of class Status MonitorClient is the log(level,app,msg) method. It
sends a string to the status monitor and reads back the result. Because
TCPSocket objects behave like any other IO instance, it’s easy to imple-
ment. You can use this class as follows:

File 78 Line 1 sm = StatusMonitorClient.new('127.0.0.1', 3333)

- # ...

- sm.fatal('billing', 'Lost connection to payment gateway.')

- # ...

5 sm.terminate

One of the most important clients will be the Java client, because it
has been the programming language of choice for a long time at Prag-
Bouquet. As we did with the Ruby client, we won’t go abstracting too
much. At the same time, adding a little layer on top of the TCP stack
will certainly pay off in the future:

File 71 Line 1 import java.io.*;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_client.rb
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/statusMonitor.java
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 152

- import java.net.*;

-

- public class StatusMonitor {

5 public static final String WARN = "w";

- public static final String ERROR = "e";

- public static final String FATAL = "f";

-

- public StatusMonitor(final String host, final int port)

10 throws UnknownHostException, IOException

- {

- _sm = new Socket(host, port);

- _out = new PrintWriter(_sm.getOutputStream(), true);

- _in = new BufferedReader(

15 new InputStreamReader(_sm.getInputStream())

-);

- }

-

- public int warn(final String app, final String msg)

20 throws IOException

- {

- return log(WARN, app, msg);

- }

-

25 public int error(final String app, final String msg)

- throws IOException

- {

- return log(ERROR, app, msg);

- }

30

- public int fatal(final String app, final String msg)

- throws IOException

- {

- return log(FATAL, app, msg);

35 }

-

- public void terminate() throws IOException {

- _out.close();

- _in.close();

40 _sm.close();

- }

-

- private int log(

- final String level,

45 final String app,

- final String msg) throws IOException

- {

- final String DEL = ",";

- _out.println(level + DEL + app + DEL + msg);

50 final String response = _in.readLine();

- int return_code = 1;

- try {

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 153

- return_code = Integer.parseInt(response);

- }

55 catch(NumberFormatException ignoreMe) {}

- return return_code;

- }

-

- private Socket _sm;

60 private PrintWriter _out;

- private BufferedReader _in;

- }

Again, most of the work takes place in the log(level,app,msg) method.
Because this is a book about Ruby, we will not go into all the nitty-
gritty details of the StatusMonitor class. However, we will demonstrate
how to use it:

File 72 Line 1 public class StatusMonitorTest {

- public static void main(String[] args) {

- try {

- final StatusMonitor sm = new StatusMonitor(

5 "127.0.0.1",

- 3333

-);

- final int result = sm.debug("billing", "ALAAARM!!");

- System.out.println(result);

10 sm.terminate();

- }

- catch(Exception e) {

- System.err.println(

- "An error occurred: " + e.getMessage()

15);

- }

- }

- }

Oh, and we shouldn’t forget the ragged hordes of Perl programmers who
inhabited our IT department in the past. All the poor guys who have
to maintain their legacy code have the right to use our amazing status
monitor, too:

File 73 Line 1 package StatusMonitor;

-

- use strict;

- use IO::Socket;

5

- use constant WARN => 'w';

- use constant ERROR => 'e';

- use constant FATAL => 'f';

-

10 sub new {

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/statusMonitorTest.java
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor.pm
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 154

- my $class = shift;

- my ($host, $port) = @_;

- my $self = {};

- my $sm = IO::Socket::INET->new("$host:$port");

15 die "Could not connect to status monitor: $!\n" unless $sm;

- $self->{'sm'} = $sm;

- bless $self, $class;

- }

-

20 sub warn() {

- my ($self, $app, $msg) = @_;

- $self->_log(WARN, $app, $msg);

- }

-

25 sub error() {

- my ($self, $app, $msg) = @_;

- $self->_log(ERROR, $app, $msg);

- }

-

30 sub fatal() {

- my ($self, $app, $msg) = @_;

- $self->_log(FATAL, $app, $msg);

- }

-

35 sub _log() {

- my ($self, $level, $app, $msg) = @_;

- my $sm = $self->{'sm'};

- $sm->print("$level,$app,$msg\n");

- $sm->getline;

40 }

-

- sub DESTROY {

- close($_[0]->{'sm'});

- }

45

- 1;

For those who are familiar with Perl (the Pathological Eclectic Rubbish
Lister, as its inventor Larry Wall sometimes calls it), the previous lines
should be no problem. For all the others it will look like line noise
until they have studied Perl for several years. Just believe it: this code
achieves the same results as our Ruby and Java code. Here’s a little
test program to prove it:

File 79 use strict;

use status_monitor;

my $sm = StatusMonitor->new('127.0.0.1', 3333);

$sm->error('tracking', 'Lost connection to service.');

This produces the following:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor_test.pl
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 155

E, [2005-09-17T17:23:43.216794 #1419] ERROR -- : tracking: \

Lost connection to service.

Admittedly, this is a lot of code that has to be maintained from now on,
but it has some valuable benefits. Although we had to implement TCP
client code for various languages, we can now add features to the status
monitor without touching the client libraries. For example, we can send
an e-mail to the operations department whenever an application logs a
fatal error. Additionally, to change the transport layer, only the different
log(level,app,msg) methods have to be changed.

Adding Better Persistence

Let’s illustrate that flexibility by replacing our cheap logger by a full-
blown MySQL database. At the same time, we’ll add an e-mail feature,
too. Our little database (called smon) consists of only one table, log_entries.
Its structure should be fairly clear:

File 67 create table log_entries(

id int unsigned not null primary key,

application varchar(64) not null,

level enum('warn', 'error', 'fatal'),

message text,

created timestamp not null

);

We’ll access the status monitor database using ActiveRecord:

File 75 Line 1 require 'rubygems'

- require 'active_record'

- require 'gserver'

-

5 ActiveRecord::Base.establish_connection(

- :adapter => 'mysql',

- :host => '127.0.0.1',

- :database => 'smon'

-)

10

- class LogEntry < ActiveRecord::Base; end

-

- class StatusMonitor < GServer

- def initialize(host = '127.0.0.1', port = '3333')

15 super(port, host)

- @level_map = {

- 'w' => 'warn', 'e' => 'error', 'f' => 'fatal'

- }

- end

20

- # Expects CSV data in the following format:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/create_smon.sql
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor2.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 156

- # level,application,message.

- def serve(client)

- level, app, msg = client.readline.chomp.split(',', 3)

25 if @level_map.has_key?(level)

- entry = LogEntry.new

- entry.application = app

- entry.level = @level_map[level]

- entry.message = msg

30 entry.save!

- client.puts('0')

- else

- client.puts('1')

- end

35 end

- end

First, we removed the Logger class (maybe we will use it again for logging
the status monitor’s own status, but for now we try to keep the exam-
ples short). Next, we added initialization code for ActiveRecord and the
LogEntry class (to learn more about ActiveRecord, see Section 2.3, ActiveRe-

cord Basics, on page 33). In our serve(client) method we didn’t have to
change a lot either. All the logging stuff was replaced by initialization
code for a new LogEntry object that gets saved for each request.

None of the client libraries had to be touched. By changing only a few
lines of Ruby code, we solved one of our biggest problems—important
information is now stored centrally. From now on we do not have to
search tons of log files to find vital information; a simple SELECT state-
ment will be sufficient. Provided that your database and system admin-
istrators earn their salaries by creating regular database backups, this
information will be safe forever.

Sending E-mails

At this point we’re unstoppable. Let’s add some more code to the status
monitor that sends an e-mail to the operations department whenever
an application logs a fatal error:

File 76 Line 1 require 'rubygems'

- require 'active_record'

- require 'gserver'

- require 'tmail'

5 require 'net/smtp'

-

-

- ActiveRecord::Base.establish_connection(

- :adapter => 'mysql',

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/status_monitor3.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

“I’D RATHER USE A SOCKET” 157

10 :host => '127.0.0.1',

- :database => 'smon'

-)

-

- class LogEntry < ActiveRecord::Base; end

15

- class StatusMonitor < GServer

- def initialize(host = '127.0.0.1', port = '3333')

- super(port, host)

- @level_map = {

20 'w' => 'warn', 'e' => 'error', 'f' => 'fatal'

- }

- end

-

- # Expects CSV data in the following format:

25 # level,application,message.

- def serve(client)

- level, app, msg = client.readline.chomp.split(',', 3)

- if @level_map.has_key?(level)

- entry = LogEntry.new

30 entry.application = app

- entry.level = @level_map[level]

- entry.message = msg

- entry.save!

-

35 inform_helpdesk(app, level, msg) if level == 'f'

- client.puts('0')

- else

- client.puts('1')

- end

40 end

-

- private

-

- def inform_helpdesk(app, level, msg)

45 subject = "A fatal error occurred in #{app}!"

- subject << " Regret your sins!"

- mail = create_mail(

- 'helpdesk@pragbouquet.com',

- subject,

50 msg

-)

- send_mail('localhost', mail)

- end

-

55 def create_mail(to, subject, body)

- mail = TMail::Mail.new

- mail.date = Time.now

- mail.mime_version = '1.0'

- mail.set_content_type 'text', 'plain'

60 mail.from = 'status_monitor@pragbouquet.com'

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 158

- mail.to = to

- mail.subject = subject

- mail.body = body

- mail

65 end

-

- def send_mail(host, mail)

- msg = mail.encoded

- Net::SMTP.start(host, 25) do |smtp|

70 smtp.send_mail(msg, mail.from_address, mail.destinations)

- end

- end

- end

Sending e-mail can be divided into two parts: creating the SMTP (Sim-
ple Mail Transfer Protocol) formatted e-mail and sending that e-mail
over a network. To create the SMTP representation, we used Minero
Aoki’s excellent tmail library2 (you can see how to obtain and install it
in Section 6.4, Deploying with setup.rb, on page 287).

In the create_mail(to,subject,body) method, we’ll make a TMail::Mail object that
contains all the attributes we’d expect an e-mail to have. Finally, on line
68, we call encoded(). It returns something like this:

Date: Sat, 17 Sep 2005 14:48:30 +0200

From: status_monitor@pragbouquet.com

To: helpdesk@pragbouquet.com

Subject: A fatal error occurred in billing! Regret your sins!

Mime-Version: 1.0

Content-Type: text/plain

Lost connection to payment gateway.

Ruby’s standard class Net::SMTP is quite handy for sending the e-mail we
just created. Lines 69 to 71 of method send_mail(host,mail) show how to
accomplish this.

We’re done! The application is now backed by a database and sends an
e-mail to the operations department whenever a fatal application error
occurs.

4.2 Remote Procedure Calls Using HTTP

Our new status monitor has been a huge success—the system failure
rate has dropped down to an all-time low of two per day, each lasting

2http://raa.ruby-lang.org/project/tmail

CLICK HERE to purchase this book now.

http://raa.ruby-lang.org/project/tmail
http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 159

for less than ten minutes. Unfortunately, this is true only for the time
between 8 a.m. and 5 p.m., Monday to Friday. Every night three to five
fatal application errors still occur, and they don’t get solved until the
following morning.

Obviously, the status monitor e-mails are read only during office hours.
It would increase our quality of service significantly if we could inform
our operations department’s employees of failures wherever they are
and whatever time it is. A good way to do this is to use the Short
Messages (SMS) supported by cellular networks: to send the message
you simply need a cellular number, and to receive it the employee needs
only to keep their cell phone with them.

Waking Up the Operator

To send short messages from a computer to a cell phone, you can do
the following:

1. Serially connect a computer and a cellular phone or modem that
can be controlled via an AT cellular command interface.

2. Connect to a Short Message Service Center (SMSC) at your net-
work provider. You send messages using a protocol called Short
Message Peer-to-peer Protocol (SMPP)3 to the SMSC. The SMSC is
responsible for delivering them to the according mobile devices.

3. Use an existing web service on the Internet.

4. Use an e-mail-to-SMS gateway.

PragBouquet chose the SMSC connection. We already have a server
that is capable of sending SMS. This particular piece of software offers
a simple interface via HTTP: it supports the single function send(recipient,

sender, type, data).

You have to distinguish between Short Messages containing textual or
binary data. Set type to text or binary accordingly (text is the default).
Binary data has to be transmitted in two-digit hexadecimal ASCII rep-
resentation, so a binary zero is transmitted as 00 and binary 63 is
transmitted as 3f.

The remaining parameters contain the data to be sent and the recip-
ient’s and the sender’s phone numbers in international format. If
the sender parameter is not set, it will be set to the recipient parame-

3http://en.wikipedia.org/wiki/SMPP

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/SMPP
http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 160

More Privacy!

Even in the early days of the World Wide Web, security was an
important issue. In 1994 Netscape Communications invented a
protocol called Secure Sockets Layer (SSL)∗ that enabled web
clients and servers to exchange sensitive data without worries.

The first protocol version and its implementation were full of
flaws, but since then, SSL has become a de facto standard and
has been improved several times. Currently, its most popular
implementation is OpenSSL.† The OpenSSL project has created
a C library that has been ported to countless platforms and is
the basis for Ruby’s SSL support, too.

In the simplest cases it makes nearly no difference whether you
use HTTP or HTTPS. For example, printing the index page of the
OpenSSL web site can be achieved as follows:

File 94 Line 1 require 'net/https'
-

- h = Net::HTTP.new('www.openssl.org', 443)
- h.use_ssl = true

5 h.get2('/') { |response| print response.body }

You have to set the use_ssl attribute of your Net::HTTP object to
true, and you have to use get2(path,initheader=nil,&block) instead
of get(path,initheader=nil,dest=nil,&block). Oh, and it’s important that
you explicitly set the SSL port (443) when opening the connec-
tion. Otherwise, the HTTP default port (80) will be used, and your
request will probably fail.

Because it’s based on the OpenSSL reference implementation,
Ruby’s support of the SSL protocol is as secure and complete
as it can be. You can encrypt and decrypt communication
transparently (as we did in the previous example). There are
methods for signing and verifying both client and server certifi-
cates. For example, peer_cert() returns the server’s X.509 certifi-
cate, and using cert=(certificate) you can set a client’s X.509 cer-
tificate. The library allows you to maintain a certificate store in
your local file system, too.

∗http://en.wikipedia.org/wiki/Secure_Sockets_Layer
†http://www.openssl.org

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/ssl_test.rb
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://www.openssl.org
http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 161

ter automatically. This way the recipient thinks he has sent himself a
message—in our case that is all right.

The service listens on port 4242 under path /send. It returns its result
using the HTTP status code, so 200 means everything went fine and
500 means an error occurred. Let’s try it using telnet:

mschmidt:/tmp> telnet localhost 4242

⇒ Trying ::1...

Connected to localhost.

Escape character is '^]'.

⇐ GET /send?type=text&recipient=+011234123456&data=hello HTTP/1.0

⇒

HTTP/1.1 200 OK

Connection: close

Date: Wed, 14 Sep 2005 20:26:47 GMT

Content-Type: text/plain

Server: WEBrick/1.3.1 (Ruby/1.8.2/2004-12-25)

Content-Length: 0

Connection closed by foreign host.

mschmidt:/tmp>

Hmm, there’s no error message from the session, but our cell phone
didn’t yell “YOU HAVE A NEW MESSAGE!” at full volume as it usually
does when it receives an SMS. So, what’s wrong? Provided that the SMS
server is working properly, the problem must be hidden in our input.
Obviously, the type and data parameters are correct, but the recipient’s
phone number contains a subtle syntax error. All international phone
numbers start with one of the following prefixes:4

• 00<international area code><national area code>

• +<international area code><national area code>

At first sight, everything seems to be all right with the recipient’s phone
number, but we forgot that we are using an HTTP service that expects
all its parameters in URL-encoded format. Hence, the leading + sign
is interpreted as a blank that renders the phone number completely
wrong. Instead of transmitting +011234123456 (an American phone
number), 011234123456 (a national phone number with a leading
blank) is transmitted.

4Usually, a leading zero of the national area code is omitted, but you should not
blindly follow this rule. For Italy, as an example, you have to explicitly transmit the
leading zero of the national area code in international phone numbers.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 162

Figure 4.1: Testing the SMS Server

In the best case, this phone number does not exist, and the SMSC
fails to deliver your message. In the worst case, someone could become
really angry while you’re desperately running your unit test suite over
and over again at 2 a.m. on a Saturday night.

When testing complex HTTP services, the telnet command can be a
bit tedious. For services expecting GET requests, you’re much bet-
ter off using an ordinary web browser (as shown in Figure 4.1). The
browser transparently handles all encoding issues for you (command-
line diehards will use wget5 or curl6 anyway). An HTML page such as the
following is sufficient for testing purposes:

File 80 Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

-

- <html>

5 <head>

- <title>SMS Service Test Page</title>

- </head>

- <body>

- <h1>Send an SMS</h1>

10 <form action="http://localhost:4242/send">

- <table>

- <tr>

5http://www.gnu.org/software/wget/wget.html
6http://curl.haxx.se

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/testpage.html
http://www.gnu.org/software/wget/wget.html
http://curl.haxx.se
http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 163

- <td>Type:</td>

- <td>

15 <select name="type">

- <option>text</option>

- <option>binary</option>

- </select>

- </td>

20 </tr>

- <tr>

- <td>Recipient:</td>

- <td><input type="text" name="recipient"/></td>

- </tr>

25 <tr>

- <td>Sender:</td>

- <td><input type="text" name="sender"/></td>

- </tr>

- <tr>

30 <td>Data:</td>

- <td><input type="text" name="data"/></td>

- </tr>

- <tr>

- <td colspan="2">

35 <input type="submit" value="Send"/>

- </td>

- </tr>

- </table>

- </form>

40 </body>

- </html>

Another way to circumvent problems like these is to use a mature HTTP
client library, such as the one that comes with the Ruby standard dis-
tribution. Let’s see how we can perform HTTP requests and encapsulate
the SMS server:

File 69 Line 1 require 'net/http'

- require 'cgi'

-

- class SmsService

5 def initialize(host = '127.0.0.1', port = 4242)

- @host, @port = host, port

- end

-

- def send_text(params)

10 send_sms(params, 'text')

- end

-

- def send_binary(params)

- send_sms(params, 'binary')

15 end

-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 164

- private

-

- def send_sms(params, type)

20 result = false

- Net::HTTP.start(@host, @port) do |http|

- query = "type=#{type}"

- params.each do |k,v|

- query << "&#{k}=#{CGI.escape(v)}"

25 end

- response = http.get("/send?#{query}")

- result = response.class == Net::HTTPOK

- end

- result

30 end

- end

A small sample program demonstrates the usage of the SmsService class.
Finally you (and all your enervated colleagues) can hear it again: “YOU
HAVE A NEW MESSAGE!”

File 69 Line 1 sms = SmsService.new

- sms.send_text(

- :recipient => '+0112341234567',

- :data => 'Hello, world!'

5)

In send_sms(params,type) of the SmsService class we open a new HTTP con-
nection using the start(host,port) method of class Net::HTTP. It expects a code
block that gets passed the current connection. Within the code block
the query string for the GET request is prepared (note that we have to
use the encode(string) method of the CGI class to URL-encode our query
parameters).

Eventually, on line 26 we initiate a GET request that returns an object
derived from Net::HTTPResponse. This object encapsulates everything that
makes up an HTTP response. Its most important methods are as fol-
lows:

• code() returns the HTTP status code.

• message() returns the HTTP status message.

• body() returns the response body.

• The headers hash contains all HTTP headers.

There is a separate class for every HTTP status code (yes, this little
library defines more than 50 classes), so instead of checking whether
code() returns 200, you can alternatively check whether your response
object’s class is Net::HTTPOK (as we did in line 27).

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

REMOTE PROCEDURE CALLS USING HTTP 165

URL Encoding

In the beginning of computer networking everything had to be
represented in ASCII characters using only 7 bits. Because of
this, nearly all protocols in today’s Internet turn non-ASCII data
into 7-bit ASCII characters somehow. RFC 1738∗ painstakingly
explains which characters are allowed in URLs:

“Only alphanumerics [0--9a--zA--Z], the special characters [$-

_.+!*’(),], and reserved characters used for their reserved pur-
poses may be used unencoded within a URL.”

The rules are simple: all ASCII control characters (0x00–0x1f,
0x7f), all non-ASCII characters (0x80–0xff), and all reserved
characters ([$&+,/:;=?@]) have to be encoded under all circum-
stances.

In addition, some characters considered unsafe should be
encoded, too: ["?<>#%{}|\ˆ~‘] and the square brackets ([,]) them-
selves (0x5b, 0x5d).

Encoding a single value is easy: you prepend its case-
insensitive, two-digit hexadecimal ISO-Latin code by a percent
symbol (%).

For example, the blank character is encoded as %20 (for con-
venience, a blank can also be encoded as a single ’+’ symbol)
and an uppercase ’A’ (whose ISO-Latin code is 65) is turned
into %41.

∗http://www.rfc-editor.org/rfc/rfc1738.txt

Integrating the SMS service into StatusMonitor is left as an exercise for the
reader. Keep in mind that short messages do have to be short: they
shouldn’t be more than 160 characters.

Sending Java stack traces is definitely not an option.

If you don’t like encoding query parameters manually, you can use
HTTP’s POST command. In the current example it doesn’t make a big
difference, though. Here’s how send_sms(params,type) would look:

File 70 Line 1 def send_sms(params, type)

- result = false

- Net::HTTP.start(@host, @port) do |http|

- query = "type=#{type}"

5 params.each { |k,v| query << "&#{k}=#{v}" }

CLICK HERE to purchase this book now.

http://www.rfc-editor.org/rfc/rfc1738.txt
http://media.pragprog.com/titles/fr_eir/code/dist_app/sm/sms2.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Enterprise Integration with Ruby

pragmaticprogrammer.com/titles/fr_eir

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/fr_eir.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_eir
www.pragmaticprogrammer.com/catalog

