
Extracted from:

Enterprise Integration with Ruby
A Pragmatic Guide

This PDF file contains pages extracted from Enterprise Integration with Ruby, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 3

Processing XML
Exchanging data between processes, components, and companies has
always been a vital part of enterprise software. Many attempts have
been made to create a universal format for data exchange, but they all
have failed for various technical and political reasons.

It’s hard to believe it took several decades before something like a stan-
dard for a platform-independent data representation was both created
and accepted. The eXtensible Markup Language (XML) has, over the eXtensible Markup

Language
years, evolved into such an industry standard for portable data. That’s
because it has some useful characteristics:

• It is plain text.

• It has been standardized by the W3C.1

• It is machine independent (so low-level details such as byte order-
ing do not matter).

• It is easy to use.

• It supports international character sets.

XML is supported by all modern programming languages. The current
Ruby distribution comes with good XML support, but compared to lan-
guages such as Java and C#, there is still a lot to be done. On the one
hand, it is easy to create and parse XML documents in Ruby. On the
other hand, Ruby lacks support for some important technologies such
as Document Type Definitions (DTDs), schema validation, and XSLT.

1http://www.w3.org/XML

http://www.w3.org/XML

CHAPTER 3. PROCESSING XML 80

REXML: What’s the Difference?

Although several XML parsers exist for Ruby (for example,
NQXML∗ or xmlparser†), the most popular is Sean Russel’s
REXML.

The majority of XML parsers are based on either the SAX2 or
DOM APIs. These have been standardized and hence look
the same in all programming languages. That’s certainly a
good thing, because if you’re familiar with DOM programming
in Java, you do not have to learn a lot to do DOM programming
in C++ or Ruby.

The downside is that general approaches such as DOM are a
compromise and tend not to be tailored to exploit the strengths
of a particular language. Sean Russel felt so too, and while
looking for better alternatives he found the Electric XML library
for Java (created by a company called The Mind Electric).‡

REXML is a pure Ruby implementation of the original Electric
XML API.

REXML is not a copy of the Java API but a genuine Ruby port.
All classes and methods have been renamed to follow Ruby
conventions, and special Ruby features (such as iterators) have
been used wherever it was possible and advantageous. In
addition, REXML comes with a lot of features that were not part
of the original Electric XML interface. There is support for SAX2,
a proprietary stream parsing API, an experimental pull parser,
and an experimental RELAX NG validator.

∗http://nqxml.sourceforge.net
†This is a binding for James Clark’s expat XML parser. It can be found under

http://www.yoshidam.net/Ruby.html#xmlparser.
‡The company is called Webmethods today, and the Electric XML library is

now integrated into their products. It’s no longer available as a stand-alone
product.

CLICK HERE to purchase this book now.

http://nqxml.sourceforge.net
http://www.yoshidam.net/Ruby.html#xmlparser
http://www.pragmaticprogrammer.com/titles/fr_eir

A SHORT XML REMINDER 81

Figure 3.1: Tree Representation of a CD

It’s unlikely that you can find a single company in this world that does
not use XML in some capacity and a lot of enterprise data is no longer
only stored in tables but between angle brackets. Hence, you better
know how to extract it and in the following sections we’ll cover the
most important XML-processing requirements: we’ll show you how to
create XML documents, how to parse them, and how to validate them.

3.1 A Short XML Reminder

XML is a subset of the more flexible and more liberal Standard General-

ized Markup Language (SGML). It allows you to define your own markup Standard Generalized

Markup Language
languages for describing data organized hierarchically in a tree struc-
ture. For example, Figure 3.1 shows a possible tree representation of
an audio CD. Its XML representation might look like this:

<?xml version='1.0' encoding='ISO-8859-1'?>

<!-- Comments look like this! -->

<cd title="Developer's Dreams">

<track id='1' title='No More Bugs' playing-time='3:49'/>

<track id='2' title='Unlimited Resources' playing-time='4:14'/>

<track id='3' title='Fat-Free Fast Food' playing-time='1:23'/>

</cd>

All XML documents must be well-formed, which roughly means the
following:

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

A SHORT XML REMINDER 82

• The document must have a single top-level element.

• All elements have to be closed explicitly, and they have to be
nested properly; i.e., <a> is not allowed, because ele-
ment must be closed before element <a>.

• Attributes always have a value, and this value has to be set in sin-
gle or double quotes. HTML attributes such as NOWRAP or colspan=5

are not allowed in XML documents.

Should I Use Elements or Attributes?

Sometimes it’s just a matter of taste, but more often it’s a decision that
should be made carefully.

The following cases force us to use elements:

• The information you want to describe can potentially occur more
than once or can potentially have child elements. It’s important to
plan for such cases up front—if you are not sure, use an element.

• Whitespace characters are significant.

In other cases, we prefer attributes over elements:

• You do not have to worry about whitespace characters. Using
attributes, it’s clear that hello differs from hello .

• Attributes often produce less noise and are more readable. For
example, compare this:

<person>

<name>Homer</name>

<middle-name>Jay</middle-name>

<surname>Simpson</surname>

</person>

to this:

<person name="Homer" middle-name="Jay" surname="Simpson"/>

• Attributes are slightly faster, because they usually need less space
than elements, and therefore less text has to be processed by the
XML parser (this is especially true for documents with long tag
names for elements that get opened and closed over and over
again). In addition, they increase parsing speed because of the
inner structure of most XML parsers. Many XML parsers are
event driven and use the SAX2 API. They search for the start tag
of elements, and whenever they find one, they call the startElement()

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 83

method, transmitting the element name and a list of all attributes
belonging to the current element.

If you have a document fragment looking like this:

<book>

<title>Pragmatic Project Automation</title>

<isbn>0974514039</isbn>

<publisher>Pragmatic Bookshelf</publisher>

</book>

startElement() is called four times (for each of the elements <book>,
<title>, <isbn>, and <publisher>), and calling methods in pro-
gramming languages supporting polymorphism is expensive. If we
use attributes instead of elements, our document will look like
this:

<book title='Pragmatic Project Automation' isbn='0974514039'

publisher='Pragmatic Bookshelf' />

Now startElement() is called only once for every <book> element.
You might not consider this a big performance boost, but if you’re
Amazon.com and have to parse several hundred thousand books
having dozens of elements, it certainly will matter.

3.2 Generating XML Documents

Generating XML documents is often necessary for communicating with
other systems. If you are using technologies such as SOAP or XML-
RPC, you do not have to worry about the XML generation yourself,
because it will be done under the hood by supporting libraries. But
there are still many applications today expecting XML documents that
you have to create “manually.”

In this section we’ll show you various techniques for generating XML
documents. You’ll see how to create documents using rather naive
approaches (such as writing raw strings). We’ll then look at more
sophisticated technologies, such as the REXML API.

To Score Well

From the beginning, customers using PragBouquet’s web shop could
freely choose from various payment methods: prepaid, invoice, or credit
card. But after some months you came to realize that there were actu-
ally customers who cheated you. They ordered flowers but never paid
for them. Therefore, the company decided to buy a so-called e-score

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 84

Figure 3.2: e-score architecture

application. This assigns a risk score to each of your new customers.
A customer with a low e-score will be allowed to order only if he or she
pays up front.

The e-score provider uses a proprietary protocol but gives you a proxy
application that hides all that stuff behind an XML/HTTP layer. It
expects an XML file containing a list of customers and returns a similar
document where every customer is assigned a risk score. You can see
the architecture in Figure 3.2 .

It’s your task to convert a customer address into an XML document
acceptable to the e-scoring application. Based on the response, you’ll
then decide which payment options will be offered to the customer.

The input documents are simple: they consist of a list of <person> ele-
ments. Of course, the e-scoring company—like every company employ-
ing more than two people—defined its own XML markup, looking like
this:

File 169 <persons>

<person name='Max' surname='Mustermann'>

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

</persons>

Generating XML Documents Using Raw Strings

Because XML documents are nothing but text, it’s tempting to generate
them using strings. So, let’s start with a simple helper function that
tags a certain value:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/persons.xml
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 85

File 174 Line 1 def tag(tag_name, value, attrs ={})

- tmp = "<#{tag_name}"

- if attrs

- attrs.each { |k,v| tmp += " #{k}='#{v}'" }

5 end

- tmp + ">#{value}</#{tag_name}>\n"

- end

-

- puts tag('hello', 'world')

10 puts tag('a', 'b', { 'c' => 'd' })

This produces the following:

<hello>world</hello>

b

For generating our <person> elements, we’ll take the object-oriented
road—we’ll create classes for both addresses and persons. Because
they are only storage classes, we use Struct to create them automatically
then add to_xml() methods to turn them into XML documents:

File 174 Line 1 Address = Struct.new(:street, :city, :postal_code)

-

- class Address

- def to_xml

5 tag('address',

- tag('street', self.street) +

- tag('city', self.city) +

- tag('postal-code', self.postal_code)

-)

10 end

- end

One of the things that makes working with Ruby so much fun is reopen-
ing classes. After Struct created an Address class for us, we reopened its
definition and added our to_xml() method. It works the same way for the
Person class:

File 174 Line 1 Person = Struct.new(:name, :surname, :address)

-

- class Person

- def to_xml

5 tag('person',

- self.address.to_xml, {

- 'name' => self.name,

- 'surname' => self.surname

- }

10)

- end

- end

Finally, we check whether it all works together:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 86

File 174 Line 1 address = Address.new(

- 'Musterstr. 42',

- 'Berlin',

- '11011'

5)

- max_m = Person.new('Max', 'Mustermann', address)

- puts max_m.to_xml

This produces the following:

<person name='Max' surname='Mustermann'><address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

</person>

Although everything looks fine, you should follow this approach only in
the simplest cases, because it has some serious disadvantages. For
example, you cannot move around and refine document fragments.
This is a pity, because XML is such a flexible format and it happens
often that new elements or attributes get added to existing document
structures. If you’ve worked exclusively with strings, you have to either
parse or manipulate them directly to add the new stuff.

Let’s assume we have access to one of those new localization services
that determine the geographic coordinates of an address, and you want
to add this information to the XML representation of the Address objects
without both adding a position attribute and changing to_xml().

Accessing the localization service is easy: you give it the street, the
postal code, and the city, and it returns a pair of coordinates:

address = Address.new(

'Musterstr. 42',

'11011',

'Berlin'

)

coordinates = LocalizationService.locate(address)

puts coordinates.latitude # -> 51.5245

puts coordinates.longitude # -> 6.75

Representing the coordinates in XML would probably look like this:

<position latitude='51.5245' longitude='6.75'/>

How can you add this to an existing XML file containing <address> ele-
ments? You can try using regular expressions and all the fancy meth-
ods of the String class, but think about it for a moment: did you consider
all special cases? What about comments or CDATA sections? What

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 87

&&

>< ><

' " "'

Character XML Entity Character XML Entity

Figure 3.3: XML Standard Entities

about <address> elements that don’t belong to <person> elements?
Or <address> elements that already have a <position> element?

You have to admit that it can get complicated. Sometimes it’s nearly
impossible to perform this kind of manipulation without parsing the
document fragment, adding the new stuff using conventional DOM
manipulation methods, and finally creating a new XML string again.

Believe it or not, we still have some disadvantages left. For example, if
you work with raw strings, chances are good that you forget to mark up
elements correctly as we did in our tag() function previously. What if a
person’s address is Main Street 7 & 8? The resulting <street> element
would be as follows:

<street>Main Street 7 & 8</street>

Every standards-compliant XML parser will reject this, complaining
that your document isn’t well-formed—blanks are not allowed after an
ampersand. Whenever the parser sees an ampersand, it assumes it
introduces an entity reference, which has to have an alphanumeric
name, ends with a semicolon, and has been defined in a Document
Type Definition (DTD). Similar things will happen whenever you use one
of XML’s special characters. If you really want to use strings for gen-
erating your documents, you’ll have to replace these characters with
their standard entities shown in Figure 3.3 .

Adding such a mechanism to our tag() method is easy:

File 173 def encode_markup(text)

return '' if text.nil? or text == ''

text.gsub!('&', '&')

text.gsub!("'", ''')

text.gsub!('"', '"')

text.gsub!('<', '<')

text.gsub!('>', '>')

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/markup.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 88

def tag(tag_name, value, attrs = nil)

tmp = "<#{tag_name}"

if attrs

attrs.each { |k,v| tmp += " #{k}='#{encode_markup(v)}'" }

end

tmp + ">#{encode_markup(value)}</#{tag_name}>\n"

end

puts tag('favorite', 'Starsky & Hutch')

This produces the following:

<favorite>Starsky & Hutch</favorite>

You’ll face more subtle problems if you ignore character set issues (as
we did in the tag() method). An XML document that does not explicitly
specify a character set encoding in its header automatically is supposed
to contain only UTF-8 characters. For ASCII texts this is perfect, but
what if you have a customer from Germany with the popular surname
Müller? In UTF-8 the German umlaut, ü, is represented as a two-byte
sequence (0xc2, 0x81), but it’s a single byte (0xfc) in the character set
ISO-8859-1 (see Section 6.1, Internationalization and Localization, on
page 240, for more details).

Whenever you get text data from an external source, from a database,
from a file, or from an HTTP server, for example, you have to determine
what character set encoding has been used.

If the specified encoding and the document’s content do not match,
your XML parser will reject it or—even worse—will misinterpret some
characters. Before reading on, you should have a look at Joel Spol-
sky’s awesome essay The Absolute Minimum Every Software Developer

Absolutely, Positively Must Know About Unicode and Character Sets (No

Excuses!).2

For our documents we now have two choices: we can set the encoding
attribute in the XML header correctly, or we can convert our final doc-
ument into UTF-8. To convert texts between different character sets in
Ruby, you can use the Iconv library. Its interface is simple: a single Iconv

line of code converts text encoded in the ISO-8859-1 character set into
the UTF-8 character set:

Iconv.conv('utf-8', 'iso-8859-1', 'Müller')

2http://www.joelonsoftware.com/articles/Unicode.html

CLICK HERE to purchase this book now.

http://www.joelonsoftware.com/articles/Unicode.html
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 89

Our final version of method tag() will use this, assuming that all element
and attribute values are encoded in ISO-8859-1:

File 172 Line 1 require 'iconv'

-

- def empty?(text) text.nil? or text == ''; end

-

5 def encode_markup(text)

- return '' if empty?(text)

- text.gsub!('&', '&')

- text.gsub!("'", ''')

- text.gsub!('"', '"')

10 text.gsub!('<', '<')

- text.gsub!('>', '>')

- end

-

- def to_utf8(text)

15 Iconv.conv('utf-8', 'iso-8859-1', text)

- end

-

- def encode(value)

- encode_markup(to_utf8(value))

20 end

-

- def tag(tag_name, value, attrs ={})

- tmp = "<#{tag_name}"

- if !attrs.nil? and !attrs.empty?

25 attrs.each { |k,v| tmp += " #{k}='#{encode(v)}'" }

- end

- if !empty?(value)

- tmp += ">#{encode(value)}</#{tag_name}>\n"

- else

30 tmp += "/>\n"

- end

- end

This version is much better than our first one, but it’s also much longer,
and it still has some flaws that cannot be solved easily. For example, it
does not check whether element and attribute names are valid accord-
ing to the XML standard (be honest: do you know the rules?). Addition-
ally, you cannot reformat the generated document—you do not have
much control over indentation, line breaks, etc. Obviously, generating
well-formed XML documents is not as simple as it seems.

Generating XML Documents with REXML

Although REXML does not implement the original DOM interface, it
offers an API based on trees. Using this API you can convert an XML
document into trees and create trees that represent XML documents.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/better_tag.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 90

Everything starts with a document. With REXML you create it like this:

require 'rexml/document'

doc = REXML::Document.new

An empty document is as useful as an empty bottle of beer. Let’s add
an element to it:

root = REXML::Element.new('my-root')

doc.add_element(root)

puts doc.to_s

This produces the following:

<my-root/>

Creating attributes makes our toolbox complete:

root.add_attribute('an-attribute', 'a-value')

puts doc.to_s

This results in the following:

<my-root an-attribute='a-value'/>

Now we can turn our Address object into XML the right way.

File 174 Line 1 class Address

- def to_xml

- adr = REXML::Element.new('address')

- adr.add_element('street').add_text(self.street)

5 adr.add_element('city').add_text(self.city)

- adr.add_element('postal-code').add_text(self.postal_code)

- adr

- end

- end

10

- address.to_xml.write($stdout, 0)

This produces the following:

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

</address>

That’s how it should look: every element is created explicitly, and the
to_xml() method no longer returns a simple string but a document frag-
ment. In addition, we can now use the write() method. This allows us
to control the string representation of an XML document. It expects an
object derived from IO and the level of indentation to be used.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 91

The result of the to_xml() method can be processed further by other
methods now. Adding coordinates to an Address object, for example,
can be done like this:

File 174 Line 1 adr = address.to_xml

- pos = REXML::Element.new('position')

- pos.add_attribute('longitude', '12.345')

- pos.add_attribute('latitude', '56.789')

5 adr.add_element(pos)

- adr.write($stdout, 0)

This produces the following:

<address>

<street>Musterstr. 42</street>

<city>Berlin</city>

<postal-code>11011</postal-code>

<position latitude='56.789' longitude='12.345'/>

</address>

REXML correctly encodes markup characters, but you still can’t ignore
character set encoding issues. REXML internally uses the UTF-8 char-
acter set, so you have to encode all strings before inserting them into
a REXML document, and you have to decode them accordingly when
reading them back.

We already saw how to achieve this using the Iconv library in Sec-
tion 3.2, Generating XML Documents Using Raw Strings, on page 84.
You can also use Ruby’s unpack() and pack() methods.

"hello".unpack("C*").pack("U*") turns a string into UTF-8. To do the opposite,
call "hello".unpack("U*").pack("C*").

Builder

As we’ve seen, building well-formed XML documents is not a trivial
task. So people constantly try to simplify it. One of those people is
Jim Weirich, who produced the Builder library for Ruby.3 Its core class is
Builder::XmlMarkup, which provides everything you need to generate well-
formed XML documents. For example:

File 158 Line 1 require 'rubygems'

- require 'builder'

-

- doc = Builder::XmlMarkup.new

5 doc.person(:name => 'Max', :surname => 'Mustermann')

- puts doc.target!

3http://builder.rubyforge.org

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/rawxml/xml_string.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://builder.rubyforge.org
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 92

This prints the following little document:

<person surname="Mustermann" name="Max"/>

The technique is probably familiar to Ruby fans: Builder defines a special
handler named method_missing() that catches calls to unknown methods
and turns them into XML tags with the same name as the method that
was called originally. In addition, a hash of parameters is turned into
attributes of the newly created element.

The resulting document can be obtained by calling target!() as we did in
line 6.

To build hierarchical documents, XmlMarkup has a nice syntax: if you
pass a code block to one of those “unknown” methods, it gets passed
the current element automatically:

File 158 Line 1 xml = ''

- doc = Builder::XmlMarkup.new(:target => xml)

- doc.person(:name => 'Max', :surname => 'Mustermann') { |person|

- person.address { |address|

5 address.street('Hauptstr. 42')

- }

- }

- puts xml

This produces the following:

<person surname="Mustermann" name="Max"><address>

<street>Hauptstr. 42</street></address></person>

Intuitive, isn’t it? Note that in line 2 we have specified the target option
and set it explicitly to a String object. Hence, Builder fills up the xml variable
with our document. The target option accepts any object that responds
to the <<(text) operator.

That’s all very nice, but the formatting of the result document is, let’s
say, suboptimal. Fortunately, there is the indent option:

File 158 Line 1 xml = ''

- doc = Builder::XmlMarkup.new(:target => xml, :indent => 2)

- doc.person(:name => 'Max', :surname => 'Mustermann') { |person|

- person.address { |address|

5 address.street('Hauptstr. 42')

- address.tag!('postal-code', '12345')

- address.city('Musterstadt')

- }

- }

10 puts xml

This prints this beautiful XML document:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 93

<person surname="Mustermann" name="Max">

<address>

<street>Hauptstr. 42</street>

<postal-code>12345</postal-code>

<city>Musterstadt</city>

</address>

</person>

There’s also a margin option, which specifies the indentation offset, so
you can format your XML documents in any way you like.

Did you notice the little trick with the postal code in line 6? postal-code()
is not a valid method name in Ruby, but <postal-code> is a perfectly
valid XML tag. To get around this, Builder lets you explicitly insert tags
using the tag!(sym,*args,&block) method.

To make sure that we do not get into trouble when XML documents
without an explicit encoding get prohibited by federal law, we better
add another line of code:

File 158 Line 1 xml = ''

- doc = Builder::XmlMarkup.new(:target => xml, :indent => 2)

- doc.instruct!

-

5 doc.person(:name => 'Max', :surname => 'Mustermann') { |person|

- person.address { |address|

- address.street('Hauptstr. 42')

- address.tag!('postal-code', '12345')

- address.city('Musterstadt')

10 }

-

- person.position(:longitude => '12.345', :latitude => '56.789')

- }

-

15 puts xml

This produces this perfect XML document:

<?xml version="1.0" encoding="UTF-8"?>

<person surname="Mustermann" name="Max">

<address>

<street>Hauptstr. 42</street>

<postal-code>12345</postal-code>

<city>Musterstadt</city>

</address>

<position longitude="12.345" latitude="56.789"/>

</person>

That’s nearly all you have to know to create XML documents with Builder,
but for some special cases you’d might need to use some of the following
methods as well:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

GENERATING XML DOCUMENTS 94

text!(text)

Allows you to create elements with mixed content:

File 158 doc = Builder::XmlMarkup.new(:indent => 2)

doc.foo { |f|

f.bar

f.text! "I live outside the bar!\n"

}

puts doc.target!

This prints the following:

<foo>

<bar/>

I live outside the bar!

</foo>

cdata!(data)

Inserts a CDATA section into an XML document:

File 158 doc = Builder::XmlMarkup.new

doc.cdata!('Do not run with scissors!')

puts doc.target!

This prints the following:

<![CDATA[Do not run with scissors!]]>

comment!(text)

Inserts a comment into an XML document:

File 158 doc = Builder::XmlMarkup.new

doc.comment!('Some comments are totally useless!')

puts doc.target!

This prints the following:

<!-- Some comments are totally useless! -->

declare!(instruction,*args,&block)

Allows you to insert DTD declarations into your document:

File 158 doc = Builder::XmlMarkup.new

doc.declare!(:ENTITY, :pp, 'Pragmatic Programmers')

puts doc.target!

This prints the following:

<!ENTITY pp "Pragmatic Programmers">

Conclusion

It should be clear by now that creating XML documents is by no means
as simple as it seems. Because of this, you’ve probably already received

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://media.pragprog.com/titles/fr_eir/code/xml/builder/test_builder.rb
http://www.pragmaticprogrammer.com/titles/fr_eir

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Enterprise Integration with Ruby

pragmaticprogrammer.com/titles/fr_eir

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/fr_eir.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_eir
www.pragmaticprogrammer.com/catalog

