
Extracted from:

From Java to Ruby
Things Every Manager Should Know

This PDF file contains pages extracted from From Java to Ruby, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2006The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

We must all suffer one of two things: the pain of discipline
or the pain of regret or disappointment.

Jim Rohn

Chapter 2

Pain
If you want to truly know the health of your project, you have to get in
touch with your pain. Athletes need to strike a balance between nagging
twinges and deeper telling aches; development managers must distin-
guish between mere hiccups and symptoms of damaging disease. If
you’re succeeding with Java with only nagging pain—if you’re deliver-
ing software your customers want on time within your budget and with
happy developers—you probably shouldn’t consider moving to Ruby.
But if your aches run deep and are the symptoms of real disease, you
have to act. The first step of introducing any new technology must be
recognizing pain.

2.1 The House of Pain

After hearing all the hype around Ruby on Rails and other frameworks,
you might be tempted to bolt for the exit too soon, but take a deep
breath first. Don’t let anyone tell you that Ruby is the answer to every
question. Java does have some tremendous advantages over most other
programming languages:

• Java’s population of programmers is huge. With Java’s massive
pool of programmers, you can always find developers to hire or
supplement your staff with temps, consultants, or even offshore
development.

• Java’s open source community thrives. Open source projects exist
across a wide spectrum of problem spaces and fill many different
niches. With Java, you can often get software for free that you’d
have to build yourself or pay for on other languages.

• Java is mature. Java is often the safest choice.

THE HOUSE OF PAIN 15

• Java is scalable. We’ve learned enough from experience to build
applications that scale.

• Java offers choice. You don’t have to paint yourself into a corner
with Java, because you have so many open standards defining
many important interfaces and vendors to choose from.

Technology

In general, Java is a safe choice. It’s mature, complete, and ready for
outsourcing. For good reasons, Java has dominated Internet integra-
tion projects. Sure, Java can handle the most difficult enterprise inte-
gration issues. It has got features to solve notoriously hard problems:

• Two-phase commit. When the same application needs to coordi-
nate two resources—such as two databases, for example—you
sometimes need sophisticated software to tie the two together to
keep things consistent. That software often uses two-phase com-
mit, and Java supports it.

• Powerful object-relational mapping. Say your company’s new DBA,
a PhD student with ten years of schooling but no practical experi-
ence, proudly brings you a database model that is in 14th normal
form. After they stop screaming, your programmers tell you they
have never heard of 14th normal form, but they are quite sure
that they don’t want to subject their object model to such torture.

Instead, your best programmers use a framework to translate data
between the database schema and the objects of your application.
That technique is known as object-relational mapping. Java has
mature frameworks that do it well; Ruby doesn’t.

• Distributed objects. When you need to build applications that span
many different computers across the room, or even across the
ocean, you sometimes need specialized software to help differ-
ent pieces of the application communicate. Java can manage dis-
tributed objects in many ways. Ruby’s options are more limited.

Ruby does have some simple transaction management and some rudi-
mentary object-relational mapping, but those frameworks are nowhere
near as powerful or as proven as their Java counterparts. If you were
to attack any of these problems with Ruby today, you’d possibly wind
up writing too much infrastructure and glue code.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

THE HOUSE OF PAIN 16

With Java, a whole lot of your glue code comes for free. Treat these
enterprise problems as if they were elephants. You can’t bring down an
elephant with a toothpick or a Swiss army knife. You need an elephant
gun. The Java platform is an elephant gun.

The Hierarchy of Pain

I once talked to a customer about the problems in her enterprise. After
questioning her developers and reading code, I strongly suspected that
productivity was her biggest problem. In fact, I was wrong. They were
horribly unproductive, but given the business climate, it didn’t matter.
Their group was dependent on requirements from three different busi-
ness units, and the development team frequently had to wait weeks at
a time for new requirements. It dawned on me that the director was
telling me the truth. Java development was simply not a bottleneck. If
Java is not the problem, don’t go looking for a solution.

To be successful, you need to understand the pain in your organization
and interpret it. You need to know where the pain is the most acute.
Most projects don’t fail for technical reasons. If you can’t solve your
communication problems, if you can’t control scope creep, or if you
can’t tell what the customer actually wants, the choice of programming
language is not going to matter to you. It’s simply not high enough in
the hierarchy of pain. Put this book down, and pick up another one.
Ruby won’t help; it will only introduce more risk.

But if you’re inclined to believe that a simpler, more productive lan-
guage would help, read on. Too many people worship Java, and too
many vendors tell you you that Java can be all things to all people, and
therein lies another kind of risk. Using the wrong tool for the job, even
when it’s the most popular tool, costs you money. Many of the problems
that we solve with Java simply aren’t elephants. I’d argue the problem
we solve most often with Java—putting a web-based user interface on
a relational database—isn’t an elephant. It’s a fuzzy little bunny rabbit.
Or a squirrel. Although you can probably kill a rabbit with an elephant
gun, bad things usually happen when you do.

Solve the wrong problem with the wrong technology, and the real pain
begins. When Java was invented, it was simple, nimble, and robust
when compared to most alternatives. But the pain crept up on us,
slowly building from an itch to a piercing, throbbing crescendo. Let’s
look at the types of problems you’re likely to find with the Java plat-
form.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 17

2.2 Poor Productivity

More than any other characteristic of any programming language, you
can translate productivity to bottom-line dollars. Let each worker do
more, and you can carry less staff. Work faster, and your application
can deliver value to the business sooner. In most cases, productivity
is the most important consideration for software development. Whether
your project emphasizes quality, features, availability, or performance,
productivity is the key to get you there. The best development teams
build software in three stages:

• Make it work (delivery).

• Make it right (quality).
• Make it fast (performance).

You can’t attack quality or performance without first getting your base
running. And you certainly need to make an application available before
you can make it highly available. It’s all about evolution. You need
to deliver tangible business value with every step. In this industry,
we’ve learned that the most productive software development happens
in smaller iterations. You simply can’t be productive by building fast,
clean applications with all possible features the first pass through your
development cycle. You’ll drown in the details, and you’ll likely throw
too much code away. It’s far better to get something running and then
improve it quickly.

You may be using Java because you think it’s a clean language and
it will save you time in the long run by improving your productivity
over the long haul. You are betting that you can introduce new fea-
tures faster, introduce fewer bugs, and fix the ones that sneak in more
quickly.

Why Is Productivity So Important?

Here’s an example from another industry. When Japan started building
cars, they didn’t build them very well. In fact, Japan had a reputation
for building junk. They needed to improve quality, and the best path to
do so was one iteration at a time.

Japan’s quality improved after they applied the technique of Statisti-
cal Process Control (SPC) to their manufacturing. The inventor of SPC,
Edward Walter Demming, tried to get the United States to adopt these
methods in post–World War II America, and it didn’t take hold; so,

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 18

Phase 1:
Admin

Phase 2
Data Entry

Phase 3
Reporting

Project 1

Project 2

P
er
fo
rm
an
ce

tu
ni
ng

M
or
e

fe
at
ur
es

M
in
im
al

fe
at
ur
es

P
er
fo
rm
an
ce

tu
ni
ng

M
or
e

fe
at
ur
es

M
in
im
al

fe
at
ur
es

P
er
fo
rm
an
ce

tu
ni
ng

M
or
e

fe
at
ur
es

M
in
im
al

fe
at
ur
es

P
erform

ance

tuning

P
erform

ance

tuning

M
inim

al

features

M
ore

features

M
inim

al

features

M
inim

al

features

Figure 2.1: Project 1’s team concentrated on unnecessary detail too
soon

he took it to Japan, where they needed to rebuild their manufactur-
ing infrastructure after the war. Demming was treated like a god in
Japan. They applied his SPC techniques religiously in their automotive
industry and eventually unseated Detroit as the top-selling auto man-
ufacturer. They improved slowly, focusing on improving process, espe-
cially their cycle time between generations. With a shorter cycle time
and leadership focused on process improvement, Tokyo’s cars improved
faster than Detroit’s.

You can apply the same principle to software. With better productivity,
you have more time to focus on improvements to features, performance,
and quality, based on the needs of the business. Figure 2.1 shows
the story. If you had three major pieces of an application to deliver
(admin, data entry, and reporting) and you focused on building fast,
perfect, feature-rich software for each major component, it would take
you a certain amount of time—arbitrarily call it 15 units, if nothing
went wrong.

If instead you put something in front of your customers after satisfying
your initial set of requirements, you’d learn things from your customers
that could save you time. Let’s say that each initial iteration takes one
unit of time. Assume your administrators say that the new admin con-

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 19

sole is fine; in fact, it’s far better than the one they’re using. Still, you
know of some bugs to fix, so you allocate one unit of time for polish-
ing work. Now, let’s say your analysts do not like the reporting feature,
finding it crude, limiting, and slow (four units). You’d need to do some
rework, combined with some polishing and performance work. Cus-
tomer service reps liked the look and feel of the system, but it could not
keep up with the call volume. You’d have to improve performance (two
units). You have delivered your software in less than half the time.

So, your goal isn’t to be perfect right out of the gate—your goal is to get
out of the gate quickly. Then, you iteratively improve. The quicker your
iterations, the better off you are. With most applications, rather than
anticipating the needs of your users, you should instead strive to get
code in front of your users quickly. Then, based on their feedback and
the needs of your business, you can apply your resources to address
performance optimization, features, and other improvements. Take a
lesson from Japan. Strive to cycle faster, and improve with each iter-
ation. If you can do both, you’ll beat your competition. That’s true in
manufacturing, and that’s true in software.

Productivity of Core Java

In terms of productivity, in order to understand how Java comes up
short, you have to know where it came from. In 1996, C++ was the
dominant programming language for application development on server
platforms. C++ was not a very productive language, but it was fast. At
the time, we thought speed was more important than productivity. C++
had all the marketing momentum (from all the Unix vendors, Microsoft,
and IBM, among others). C++ had the community. But when conditions
are right, new programming languages emerge and old ones fade.

Any new programming language needs a catalyst to get the community
rolling. Programming languages need a community in order to achieve
widespread success, but it’s hard to get new users without a commu-
nity. When Sun created Java and embedded it into the Netscape Navi-
gator Internet browser, they made some excellent compromises to ramp
up a Java community in a hurry:

• Sun made Java look like C++. Java adopted a syntax like that of
C++. With a C++-like language, Java didn’t have to establish its
own community from scratch. It could simply lure in C++ devel-
opers.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 20

• Sun made Java act like C++ in a few important ways. Object-
oriented languages let you build applications with a certain kind
of building block: an object. Objects have both behavior and data,
rolled up together. C++ cheats on object orientation, because some
C++ elements, like characters and numbers, are not really objects.
Java cheats in the same way.

• Sun copied a C++ feature called static typing. Static typing means
that certain pieces of an application have one type, and you have
to declare that type in advance. Many of the most productive lan-
guages for building applications use a different strategy, called
dynamic typing.

In Beyond Java, I assert that Java’s creators had to make these com-
promises to succeed. But compromises have two sides. By building a
language that was closer to C++ than alternatives such as Smalltalk or
Lisp, Sun was able to attract C++ users to the fledgling language. The
downside of these compromises is productivity. C, and C++ by exten-
sion, was never designed to build applications. It was designed to build
operating systems such as Unix. C++ was designed to be flexible and to
produce fast systems code, not to productively build applications. We’re
now paying for the compromises:

• The C++ syntax, combined with Java’s static typing, means pro-
grammers have to type too much—Java programs have two to
four times the number of characters of similar programs in more
dynamic languages such as Ruby. Many believe that shorter pro-
grams reduce maintenance costs proportionately.

• Java’s static typing requires a compiler, so the compiler can check
certain details for programmers, such as several forms of compat-
ibility between two parts of a program. As a consequence, Java
developers have to go through an extra compile step hundreds of
times a day. Ruby developers don’t.

• Java’s primitives, are not object-oriented; this means that Java
libraries must often be many times larger than libraries for purely
object-oriented languages. For example, object-oriented languages
have features to turn objects into XML. Similar Java programs
have to deal with objects, but also characters, numbers, Booleans,
and several other primitive types.

The available evidence to support programmer productivity for any lan-
guage is remarkably scarce. One of the most compelling studies I’ve

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 21

0 5 1510 20

Median development time in hours

TCL
REXX
Python
Perl

Java
C++
C

D
yn
am
ic

S
ta
tic

Figure 2.2: The productivity of seven different languages

seen on the topic is very old and does not relate directly to Ruby. I men-
tion it here only because every single dynamically typed language, the
so-called scripting languages, did much better than its statically typed
peers. Figure 2.2 shows the results of a report1 comparing productiv-
ity of dynamic languages such as Python, REXX, and Tcl to static lan-
guages such as C++ and Java. Surprisingly, Java is the worst language
in the study, being around one third as productive as the scripting
alternatives. Further, Java programs were generally two to three times
as long as programs from the scripting languages. You could argue that
tools and frameworks have gotten better since then, but we’ve also seen
extensive bloating and a proliferation of frameworks. To many, these
problems represent a productivity gash too large for any IDE to patch.

In Chapter 4, Pilot, on page 59, we’ll look at a number of reasons that
Ruby development can be many times as productive as Java develop-
ment for certain problem domains. If you’re interested but not con-
vinced, you can do a prototype and measure productivity for yourself.

Productivity in Frameworks

You might think you could sacrifice some productivity when you’re deal-
ing with the low-level Java programming language and make up that
time by using one of the thousands of Java frameworks. Usually, you’d
be wrong.

1http://page.mi.fu-berlin.de/~prechelt/Biblio/jccpprt_computer2000.pdf

CLICK HERE to purchase this book now.

http://page.mi.fu-berlin.de/~prechelt/Biblio/jccpprt_computer2000.pdf
http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 22

Essential complexity is the complexity required to do a job. If your appli-
cation does tax returns, your application is going to be at least as com-
plex as the requirements in the tax law. Nonessential complexity, also
called accidental complexity, deals with the complexity you introduce
to your environment. Martin Fowler, one of the most influential con-
sultants in the computing profession, suggests Java frameworks intro-
duce too much nonessential complexity. When you look at the history
of enterprise computing in Java, you have to conclude he’s right.

What’s wrong with Java?—A discussion with Martin Fowler
Chief scientist of ThoughtWorks,

author of Patterns of Enterprise Application Architecture

Q: What was your first object-oriented programming language?
Early in my career, I had an interest in objects. I worked with
Smalltalk and C++. Most people at that time started with one or
the other, but knowing both gave me a certain advantage. I got a
distinctly schizophrenic view of the world. I was always conscious
of the benefits of Smalltalk over C++. I didn’t believe that peo-
ple should use C++ for enterprise applications, but they did. When
Java came along, we gained some, primarily because Java killed
C++ for enterprise application development. But like many old
Smalltalkers, I felt Java was a step backward from Smalltalk.

Q: What are the advantages of Java over Ruby?
With Java, you get sophisticated tools. I feel the pain when I have
to leave the Intellij IDE. For companies, the stability of Java (and
.NET, Java’s separated-at-birth twin) is important, because post-
COBOL, things were unstable with many languages and tools
where it was hard to see what would last.

Q: What are the limitations of Java as you see them?
I usually hear people complain about static typing, which is impor-
tant but not the whole story. Java guys spend too much time
dealing with all the technical stuff that surrounds the core busi-
ness behavior; this is complexity that’s not helping to deal with
the business problem. Our CEO (ThoughtWorks CEO Roy Singham)
likes to taunt Java by saying it has failed the enterprise. The fact
that we have to do all of this machinery means developers are

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 23

not thinking enough about business issues. They’re thinking about
how to move data in and out of a database, and in and out of a
GUI.

Q: Where did Java go wrong?

There’s so much of a push in the Java world to keep lesser-skilled
developers from making messes, and that idea has failed. The
idea that you can keep people from shooting themselves in the
foot is appealing, but it’s not what we’ve seen in practice. There
are far too many overly complex bad Java apps out there.

Overall, Java is just too complicated. No Silver Bullet [Bro86] made
the distinction between essential and accidental complexity. For
example, if you’re building a payroll system, the payroll business
rules represent real complexity. But with Java, accidental com-
plexity is most of the total effort. The EJB fiasco made this worse.
EJB is a stunningly complex framework but is far too complex for
most of the applications we see. Spring and Hibernate are a huge
step forward, but there’s still this nagging feeling that there’s too
much accidental complexity.

Q: Do you see any real alternatives to Java?

In the enterprise space in the last six years, a dark horse is stalk-
ing the .NET/Java duopoly: LAMP. LAMP stands for Linux, Apache,
MySQL, and one of the P-scripting languages from PHP, Perl, and
Python. In reality, LAMP has come to signify some combination of
open source frameworks, plus a scripting language. By that defini-
tion, Ruby is an honorary part of the LAMP equation; you just have
to ignore the downstroke on the R.

I used Perl for a little while, but I gave up when I couldn’t even
read some of the stuff I wrote. Some things in LAMP are now get-
ting more interesting because the scripting languages are getting
closer—application designs are getting better. I got into Python
for a while, because objects were much more fluent, and it was
much more dynamic than Java.

But don’t forget that these are still early days. As I talk about this,
we don’t have much experience of Rails in the field.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

POOR PRODUCTIVITY 24

At the moment it looks good, good enough to be worth exploring
further, but until we see the practice in the field, we won’t know
for sure.

Q: Can Java be fixed?
That’s an interesting question. You need to first answer the ques-
tion, “What do they need to do to evolve the language to look
more like the languages that feel more comfortable?” I’m not
completely sure what that list is, but we could come up with such
a list. But it’s not just the language. It’s all of the libraries. Can
you meld those to take advantage of the new languages? What
impact will new language fixes have on the frameworks? Are the
frameworks going to be able to become more dynamic? Or are
there so many frameworks that we’ve become locked into a static
mind-set?

On another level, can people really replicate the design decisions
that David Heinemeier Hansson (creator of Ruby on Rails) made?
Take convention over configuration. It’s one of those things where
people can worry about all of the things that can go wrong
instead of concentrating on what’s going right. I like that decision.
It’s gutsy and so much against conventional wisdom. Lots of evi-
dence suggests that it does work. Can that decision be brought
into Java frameworks?

Q: Will Java be fixed?
I don’t really care. Because one way or another, we win. My heart
is behind the underdog, though.

EJB

Since about 1999, most of the commercial Java brainpower has been
focused on the hardest enterprise problems. In December 1998, the
Java Community Process (JCP), unleashed the EJB (Enterprise Jav-
aBeans) framework onto the Java developer population.

This terrible creature was very powerful, but that beast brought along
too many of its own problems, including unmanageable complexity and
poor performance.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

Competitive Edge
Now that you’ve gotten an introduction to the individual practices of an agile developer,
you may be interested in some of our other titles. For a full list of all of our current titles,
as well as announcements of new titles, please visit www.pragmaticprogrammer.com.

Ship It!
Agility for teams. The next step from the
individual focus of Practices of an Agile Devel-
oper is the team approach that let’s you Ship
It!, on time and on budget, without excuses.
You’ll see how to implement the common tech-
nical infrastructure that every project needs
along with well-accepted, easy-to-adopt, best-
of-breed practices that really work, as well as
common problems and how to solve them.

Ship It!: A Practical Guide to Successful
Software Projects
Jared Richardson and Will Gwaltney
(200 pages) ISBN: 0-9745140-4-7. $29.95

My Job Went to India

World class career advice. The job market is
shifting. Your current job may be outsourced,
perhaps to India or eastern Europe. But you
can save your job and improve your career
by following these practical and timely tips.
See how to: • treat your career as a business
• build your own brand as a software devel-
oper • develop a structured plan for keeping
your skills up to date • market yourself to
your company and rest of the industry • keep
your job!

My Job Went to India: 52 Ways to Save
Your Job

Chad Fowler
(208 pages) ISBN: 0-9766940-1-8. $19.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

www.pragmaticprogrammer.com
http://pragmaticprogrammer.com/catalog

Cutting Edge
Learn how to use the popular Ruby programming language from the Pragmatic Program-
mers: your definitive source for reference and tutorials on the Ruby language and exciting
new application development tools based on Ruby.

The Facets of Ruby series includes the definitive guide to Ruby, widely known as the
PickAxe book, and Agile Web Development with Rails, the first and best guide to the
cutting-edge Ruby on Rails application framework.

Programming Ruby (The PickAxe)
The definitive guide to Ruby programming.
• Up-to-date and expanded for Ruby ver-
sion 1.8. • Complete documentation of all the
built-in classes, modules, methods, and stan-
dard libraries. • Learn more about Ruby’s
web tools, unit testing, and programming phi-
losophy.

Programming Ruby: The Pragmatic
Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler
and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

Agile Web Development with Rails

A new approach to rapid web development.
Develop sophisticated web applications
quickly and easily • Learn the framework of
choice for Web 2.0 developers • Use incre-
mental and iterative development to create the
web apps that users want • Get to go home
on time.

Agile Web Development with Rails:
A Pragmatic Guide
Dave Thomas and David Heinemeier Hansson
(570 pages) ISBN: 0-9766940-0-X. $34.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Java to Ruby Home Page
pragmaticprogrammer.com/title/fr_j2r
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates
Be notified when updates and new books become available.

Join the Community
pragmaticprogrammer.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news
Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/title/fr_j2r.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog
Customer Service: support@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com
Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/title/fr_j2r
www.pragmaticprogrammer.com/catalog

	Introduction
	The Emergence of Ruby
	The Java Platform Is Weakening
	Early Adopters Embrace Ruby
	The Process
	Moving Ahead
	Executive Summary

	Pain
	The House of Pain
	Poor Productivity
	Long Ramp-Up
	A Look at Risk
	Executive Summary

	Establishing Your Reward
	Momentum
	Productivity
	Cost
	Ramp-Up
	Risk
	Looking Ahead
	Executive Summary

	Pilot
	Building Your Plan
	Scenario 1: Classic Pilot
	Scenario 2: Trojan Horse
	Scenario 3: Race
	Scenario 4: Bet-your-Business: Basecamp
	Scenario 5: Rescue
	Making the Choice
	Executive Summary

	On an Island
	Overview
	The Basics
	Web Development
	Rails
	Middleware
	Looking Ahead
	Executive Summary

	Bridges
	Road Maps
	Scenarios
	Ruby to Java Bridges
	JRuby
	Service-Oriented Architectures
	Executive Summary

	Ramping Up
	Building Your Staff
	Building Skills Internally
	Short-Term Augmentation
	Preparing the Way
	A Brief Word about Deployment
	Executive Summary

	Risk
	Bad Risk
	Mitigating Technical Risk
	Mitigating Political Risk
	What's Ahead for Ruby?

	Bibliography

