
Extracted from:

From Java to Ruby
Things Every Manager Should Know

This PDF file contains pages extracted from From Java to Ruby, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2006The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

If you want to make enemies, try to change something.
Woodrow Wilson

Chapter 4

Pilot
4.1 Building Your Plan

The first time you use a new language in anger, to solve a real busi-
ness problem, there’s much at stake. If you’re wildly successful, you
can pave the way for change. If you fail miserably, you may never get
another chance. If you’re convinced that Ruby can help, you’ll need to
carefully plan this initiation.

Identifying a Business Problem

You’ll choose your business problem based on the political environ-
ment and technical demands. You’ll need to strike a balance across at
least two axes: the political and the technical. If you get too conserva-
tive and pick a problem that’s too easy or too small, you won’t prove
much, and no one will take notice. Conversely, if you get so aggressive
that you hit technical obstacles beyond your abilities, you could fail, or
experience an ugly success and get swept away by politics. The inter-
view on page 64 tells the story. As a problem gets more difficult, risks
get higher, but you learn more. As politics and visibility increase, your
potential reward gets higher, but consequences also increase.

Choosing a Technical Problem

Combined with the people you put on the project, the technical char-
acteristics of your problem, more than any other characteristics, will
determine your success or failure. A good tool, used for the wrong job,
is a bad tool. Chapters 5 and 6 will explore Ruby technologies in greater
detail, but let’s look beyond the simplistic view of picking the right job
for the tool. Figure 4.1, on the next page shows that your political goals
will help determine the technical problem you choose:

BUILDING YOUR PLAN 60

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

“Difficult”
Learn more.

Easy. Low
payback.

Learn more.
Bad if fails.

Good chance
of success.

Less learned.

Figure 4.1: High technical risks are ideal for learning but bad for poli-
tics

• Selling. If you’ve already chosen Ruby and you’re looking to estab-
lish early success to sell the framework, you want the easiest pos-
sible problem and best possible fit.

• Learning. If you’re more interested in learning about how far you
can push Ruby or whether it’s the best technical fit, then you’ll
want to pick a more demanding technical problem, and you’ll want
to see how far you can bend Ruby to suit your purposes.

In other words, you can’t always have the perfect pilot for both selling
and learning. Since you’ll usually want to do some of both, you’ll have to
strike a compromise. As I lay out individual scenarios from teams who
have built successful Ruby pilots, you’ll see how each team considered
both the technical and political realities of breaking new ground. You’ll
have to do the same:

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

BUILDING YOUR PLAN 61

• You’ll be learning a new technology. You’ll want to show off your
productivity, but make sure you allow some time for your team
to play and learn so you’ll know more about the environment and
have a better experience once it’s time to apply your knowledge to
a real-world problem.

• You’ll often be tempted to explore some aspect of Ruby that other
teams have never tried before, but you’ll be much better off if you
stick to problems that others have solved before you for your first
project. The Ruby community is open and accommodating. Ask
them whether anyone has tried a given problem before.

• You’ll be anxious to prove that you can work on a thinner budget,
but be careful. If you need help, get it. Working with a Ruby expert
on a short-duration pilot project will save you thousands of dollars
in the long run. You won’t save any money if you attack too much
of a problem before you’re ready.

• Keep sight of your political goals. If Java is not working in your
environment, your first goal is to establish a working alternative.
If serious Java proponents exist, technical failure will be devastat-
ing, so you’ll want to start slow. If you have more freedom to fail,
you can push the technology into more demanding applications.

Building a Team

After you’ve chosen a problem, you’ll need to build a team. The best
teams for Ruby have a few common characteristics:

• They often have some experience with dynamic languages. If your
programmers have written Smalltalk, Lisp, Python, or Perl before,
they’ll be able to take better advantage of Ruby. If they’ve used
Java’s dynamic features such as reflection or aspect-oriented pro-
gramming, they’ll fare better than those who haven’t.

• They are small. You don’t need nearly as many developers as you
need for similar Java problems.

• They have freedom. If your technical staff is free to make their
own decisions, they’ll make progress more quickly.

Small, smart teams play to the strengths of dynamic languages. In the
rest of the chapter, we’ll lay out scenarios that have been successful
for other Ruby teams. They will range from simple to complex on a
technical scale and from low to high visibility on a political scale. See
how others introduced Ruby.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

SCENARIO 1: CLASSIC PILOT 62

4.2 Scenario 1: Classic Pilot

Using this scenario, your goal is to learn enough about Ruby to make a
go or no-go decision. Frankly, this scenario is not quite as common as
you’d expect. Since Java is near its peak popularity, language advocates
typically need to be stronger and more creative than those for other new
technologies. Still, a pilot project can often tell you everything you need
to know about whether Ruby is a technical fit.

Profile

This scenario differs from the others in this chapter because the pri-
mary goal is to learn, rather than sell. Figure 4.2, on the following page,
shows that when you look at the profile for this type of application, the
critical axis is the technical one. Although different people in your orga-
nization may well have different motivations, if your goal is to make
a decision rather than validate your decision with a successful pilot,
you’re going to want to choose an application with enough technical
challenges to make your decision. The political visibility of the project
doesn’t matter as much. For the best of cases, you should reduce your
risk by picking a project with limited consequences for failure.

Example: A Manufacturing Monitor at Autobar Flexible
Holland B.V.

Sake Lemstra, a managing director at Autobar Flexible Holland B.V.,
asked Henri ter Steeg of LinkIT Group to develop an application to help
collect data on his manufacturing process. The interview on page 64
tells the story. Originally, Henri used Java with Swing to develop the
application, based on the popularity of Java and the excellent enter-
prise integration features, including good Oracle integration. The per-
formance was adequate and the interface was rich, but the application
became increasingly complex as new requirements came.

They decided to pick a new technology and considered several Java
solutions, but none of them seemed to offer enough of an advantage to
make a rewrite worthwhile. Henri noticed the new Ajax support in Ruby
on Rails, so he decided to give Rails a try. Henri was concerned about
several aspects of the application that would stretch the Ruby platform:

• The performance would have to be good, because the application
would post graphs with thousands of data points every minute.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

SCENARIO 1: CLASSIC PILOT 63

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

Pilot

A lower political risk helps.
Technical risk must be

moderately high.

Figure 4.2: Classic pilots need medium to high technical risk

• The customer had a version of Oracle that was not yet supported
by Ruby on Rails, so they’d need to add specific support for Oracle
features such as their outer join syntax.

• The user interface would need to be much more powerful than
typical HTML applications.

Henri decided to implement a small slice of the application but one
that dove deeply into technical details. He implemented a classic spike,
which is a thin but technically demanding slice of the application to
make sure Ruby on Rails would work. A custom caching layer solved
the performance concerns. Ajax support, in conjunction with existing
C code, handled the graphing functions needed by the sophisticated
interface requirements. The flexibility of both Ruby and Rails allowed
him to change the outer join syntax and add a simple real-time cache
to his objects by changing the definition of classes in the core frame-

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

SCENARIO 1: CLASSIC PILOT 64

works. This capability, called open classes, lends an incredible flexibil-
ity to Ruby, compared to Java. Because of excellent productivity and a
much simpler application base, they decided to move ahead with Ruby
on Rails. His customer was more interested in a clean, working appli-
cation on a better timeline than forcing a Java agenda, so he moved
development operations to Ruby.

Drawing Conclusions

Henri’s implementation was a classic pilot. He was most interested in
improving productivity and saw Ruby on Rails as one possible candi-
date to get him there. He was not concerned about political fallout,
because had he failed, he would have simply chosen an alternative
technology. This was strictly a learning exercise. The pilot was quite
successful. Even after dealing with these framework limitations, Henri
estimates that he is roughly four times as productive on Rails as he
was in Java.

Rescue scenario—A discussion with Henri ter Steeg
LinkiT Group

Q: Would you describe your application?
We had a suffering Java application. The application was writ-
ten in Swing. It worked OK, but it was getting too complicated.
The application had to communicate with other clients, and we
couldn’t get it to query the database with good performance.
It got to the point where we were afraid to add more features,
because the application was out of control. So, we decided to
move the application to another framework.

We looked at other Java frameworks first. We considered the
Spring Rich Client framework, but it looked unfinished. We also
considered a handful of other Java frameworks.

We ran across Rails. We considered it briefly and then put it aside
until the Ajax stuff came along. I thought, “This is really impressive.”
I did a spike and was really surprised with the speed of develop-
ment. I could develop client-server applications very fast. I got
back to Java and said, “This is too difficult, and it’s too much work.”

On Rails, my development speed was excellent.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

SCENARIO 1: CLASSIC PILOT 65

Q: What were some of the limitations?
We needed to use abstract data types for performance reasons.
In JDBC, you can use them, but you can’t in Rails. So, we created
some views and “instead of” triggers and got past the problem.
We also used Oracle drivers that did not support the outer join syn-
tax. Active Record did not support outer join syntax, so we just cre-
ated some classes and changed one of the Rails methods at run
time. It was easier than I expected to work around what looked
like serious problems at the time.

Q: What are you using for security?
At the moment, we’re just using Apache security. We did not use
the Rails generator. For now, Apache security is all we need.

Q: Have you been pleased with the performance?
For the most part, it has been good. We had one major perfor-
mance issue. With Java, we could use a Swing app, which did
some caching for us for performance reasons. This approach is
difficult with a web app. We solved it with time-based caching.

Q: Did you experience any resistance to Rails?
No. The business environment trumped everything else. Our code
is simpler and easier to maintain, and we can work faster with it.

Q: What were your top business priorities?
We wanted a stable application. We wanted to develop faster,
and we wanted a simpler code base. As a very rough guess, I’d
say we’re coding three to four times faster.

Q: What was the most interesting part of your application?
We wrote a C fragment to produce our business graph. The busi-
ness logic gets one data point for each minute, and we accumu-
late many data points over time. Doing a fresh database query
every minute was not an option. In the Swing application, we
cached the entire graph. Now, database triggers write the new
data points to a file. We have a CGI script that reads the file and
plots the graph.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

SCENARIO 2: TROJAN HORSE 66

4.3 Scenario 2: Trojan Horse

With the Trojan horse strategy, your goal is to get a working pilot estab-
lished with minimal visibility and leverage that tiny success to increase
Ruby penetration. Unlike the classic pilot scenario, you’re not as inter-
ested in learning from the experience. You’ve already established that
Ruby can help by other means, and you’re seeking to establish some
success with an easy project with a political climate that will not pro-
vide much resistance. If you later choose to do so, you can grow your
advocates internally and leverage your success for better Ruby pene-
tration on more important applications in the future.

Profile

The key to the Trojan horse scenario is to get your initial pilot, or Tro-
jan horse, established with as few technical and political obstacles pos-
sible. To do so, you work Ruby into an organization with very little
management visibility and feed the Ruby development culture. You’d
prefer an application with little technical or political risk, as in Fig-
ure 4.3, on the following page, choosing instead to fly Ruby in beneath
the radar. Culture is often the most important element. You want to
build a groundswell of support for the language from the bottom up.

Keep in mind that you’ll need to take on enough technical risk to prove
something important—you won’t prove anything by building an appli-
cation to manage your ten contacts with a primitive web page. Often,
you’re looking to save time and money by efficiently handling tedious,
unimportant jobs, where technology choice might not be as much of
an issue. These applications are often inward facing and may support
other applications. Admin consoles, tests, and build tools are likely tar-
gets for the Trojan. You can then promote your success and leverage
that success to take on other Ruby on Rails projects.

Example: Amazon.com

The Amazon.com interest in Ruby has been well publicized by several
bloggers, including Steve Yegge, who worked at Amazon.com for seven
years (and provided much of the background for this scenario), and
David Heinemeier Hansson, the creator of Ruby on Rails. Ruby was
initially not a popular or approved language at Amazon.com, but they
have since hosted the Seattle-area Ruby user group. To establish Ruby,
its proponents simply got Ruby into the hands of developers who could
use it. The tools support team made sure Ruby was installed on all

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

SCENARIO 2: TROJAN HORSE 67

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

Trojan

Take on the bare minimum
political risk. Take on only
enough technical risk to

establish credibility.

Figure 4.3: The Trojan Horse scenario requires low risk on both axes

developer machines. They brought in Dave Thomas to do a brown-
bag talk on Ruby. Dave didn’t actually promote using Ruby at Ama-
zon.com; instead, he promoted learning alternative languages to learn
how to program better. They gave away 120 free copies of Programming
Ruby [TFH05] and eventually built a ground swell of support at Ama-
zon.com. Ruby found increasing use in small, inwardly facing projects.
Ruby is thriving today at Amazon.com as an accepted language, though
it does not do most of the heavy lifting.

Example: An Administrative Console

I recently encountered another excellent opportunity for the Trojan
horse strategy. I was doing a Java training course at a consultancy.
They provided application developers to conservative companies. Nearly
all their development was done in the Java programming language. One
application in particular was done with old technologies, including EJB.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/title/fr_j2r

Competitive Edge
Now that you’ve gotten an introduction to the individual practices of an agile developer,
you may be interested in some of our other titles. For a full list of all of our current titles,
as well as announcements of new titles, please visit www.pragmaticprogrammer.com.

Ship It!
Agility for teams. The next step from the
individual focus of Practices of an Agile Devel-
oper is the team approach that let’s you Ship
It!, on time and on budget, without excuses.
You’ll see how to implement the common tech-
nical infrastructure that every project needs
along with well-accepted, easy-to-adopt, best-
of-breed practices that really work, as well as
common problems and how to solve them.

Ship It!: A Practical Guide to Successful
Software Projects
Jared Richardson and Will Gwaltney
(200 pages) ISBN: 0-9745140-4-7. $29.95

My Job Went to India

World class career advice. The job market is
shifting. Your current job may be outsourced,
perhaps to India or eastern Europe. But you
can save your job and improve your career
by following these practical and timely tips.
See how to: • treat your career as a business
• build your own brand as a software devel-
oper • develop a structured plan for keeping
your skills up to date • market yourself to
your company and rest of the industry • keep
your job!

My Job Went to India: 52 Ways to Save
Your Job

Chad Fowler
(208 pages) ISBN: 0-9766940-1-8. $19.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

www.pragmaticprogrammer.com
http://pragmaticprogrammer.com/catalog

Cutting Edge
Learn how to use the popular Ruby programming language from the Pragmatic Program-
mers: your definitive source for reference and tutorials on the Ruby language and exciting
new application development tools based on Ruby.

The Facets of Ruby series includes the definitive guide to Ruby, widely known as the
PickAxe book, and Agile Web Development with Rails, the first and best guide to the
cutting-edge Ruby on Rails application framework.

Programming Ruby (The PickAxe)
The definitive guide to Ruby programming.
• Up-to-date and expanded for Ruby ver-
sion 1.8. • Complete documentation of all the
built-in classes, modules, methods, and stan-
dard libraries. • Learn more about Ruby’s
web tools, unit testing, and programming phi-
losophy.

Programming Ruby: The Pragmatic
Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler
and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

Agile Web Development with Rails

A new approach to rapid web development.
Develop sophisticated web applications
quickly and easily • Learn the framework of
choice for Web 2.0 developers • Use incre-
mental and iterative development to create the
web apps that users want • Get to go home
on time.

Agile Web Development with Rails:
A Pragmatic Guide
Dave Thomas and David Heinemeier Hansson
(570 pages) ISBN: 0-9766940-0-X. $34.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Java to Ruby Home Page
pragmaticprogrammer.com/title/fr_j2r
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates
Be notified when updates and new books become available.

Join the Community
pragmaticprogrammer.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news
Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/title/fr_j2r.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog
Customer Service: support@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com
Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/title/fr_j2r
www.pragmaticprogrammer.com/catalog

	Introduction
	The Emergence of Ruby
	The Java Platform Is Weakening
	Early Adopters Embrace Ruby
	The Process
	Moving Ahead
	Executive Summary

	Pain
	The House of Pain
	Poor Productivity
	Long Ramp-Up
	A Look at Risk
	Executive Summary

	Establishing Your Reward
	Momentum
	Productivity
	Cost
	Ramp-Up
	Risk
	Looking Ahead
	Executive Summary

	Pilot
	Building Your Plan
	Scenario 1: Classic Pilot
	Scenario 2: Trojan Horse
	Scenario 3: Race
	Scenario 4: Bet-your-Business: Basecamp
	Scenario 5: Rescue
	Making the Choice
	Executive Summary

	On an Island
	Overview
	The Basics
	Web Development
	Rails
	Middleware
	Looking Ahead
	Executive Summary

	Bridges
	Road Maps
	Scenarios
	Ruby to Java Bridges
	JRuby
	Service-Oriented Architectures
	Executive Summary

	Ramping Up
	Building Your Staff
	Building Skills Internally
	Short-Term Augmentation
	Preparing the Way
	A Brief Word about Deployment
	Executive Summary

	Risk
	Bad Risk
	Mitigating Technical Risk
	Mitigating Political Risk
	What's Ahead for Ruby?

	Bibliography

