
Extracted from:

Best of Ruby Quiz
Volume One

This PDF file contains pages extracted from Best of Ruby Quiz, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

ANSWER 13. 1-800-THE-QUIZ 153

Answer 13From page 31

1-800-THE-QUIZ
Some problems are just easier to express with recursion. For me, this
is one of those problems.

If you’re not familiar with the idea, recursion is defining a method that
calls itself. Sometimes we humans struggle to understand this con-
cept of defining something in terms of itself, but it can make some
programming challenges easier. Let’s use this problem to explore the
possibilities of recursion.

Word Signatures

The first step to solving this problem is doing the right work when you
read in the dictionary. Come search time, we won’t be interested in
words at all, just groupings of digits. Each word in the dictionary can
be encoded as the digits we would need to type on a phone. If we do
that while we’re reading them in and store them correctly, we can save
ourselves much work down the road. First, let’s begin a PhoneDictionary

object and give it an encoding:

1_800_the_quiz/phone_words.rb

require "enumerator"

class PhoneDictionary

def self.encode(letter)

case letter.downcase

when "a", "b", "c" then "2"

when "d", "e", "f" then "3"

when "g", "h", "i" then "4"

when "j", "k", "l" then "5"

when "m", "n", "o" then "6"

when "p", "q", "r", "s" then "7"

when "t", "u", "v" then "8"

when "w", "x", "y", "z" then "9"

end

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 13. 1-800-THE-QUIZ 154

Beware of Recursion

Though it simplifies some problems, recursion has its price. First,
the repeated method calls can be slow. Depending on the size
of the data you are crunching, you may feel the slowdown. Run
the code in this chapter against different-sized dictionaries, and
you’ll start to see the penalty.

Ruby also uses the C stack, which may not be set very deep by
default, so it’s best to avoid problems that need a lot of nested
calls. The examples in this chapter are fine, because they never
go deeper than eight levels. Make sure you stay aware of the
limits in your own code.

There’s no such thing as recursive code that can’t be unrolled
to work as an iterative solution. If the restrictions bite you, you
may just have to do the extra work.

My first instinct was to put the encoding into a constant, but I later
decided a method would make it easy to replace (without a warning
from Ruby). Not all phones are like mine, after all.

Obviously, you just give this method a letter, and it will give you back
the digit for that letter.

Now, we need to set up our dictionary data structure. As with the
rest of the methods in this quiz, this is an instance method in our
PhoneDictionary class.

1_800_the_quiz/phone_words.rb

def initialize(word_file)

@words = Hash.new { |dict, digits| dict[digits] = Array.new }

("0".."9").each { |n| @words[n] << n }

%w{a i}.each { |word| @words[self.class.encode(word)] << word }

warn "Loading dictionary..." if $DEBUG

read_dictionary(word_file)

end

I use a Hash to hold word groups. A group is identified by the digit
encoding (hash key) and is an Array of all words matching that encoding
(hash value). I use Hash’s default block parameter to create word group
arrays as needed.

The next line is a trick to ease the searching process. Since it’s possible

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 13. 1-800-THE-QUIZ 155

for numbers to be left in, I decided to just turn individual numbers into
words. This will allow bogus solutions with many consecutive numbers,
but those are easily filtered out after the search.

Finally, I plan to filter out individual letter words, which many dictio-
naries include. Given that, I add the only single-letter words that make
sense to me, careful to use encoding() to convert them correctly.35

At the bottom of that method, you can see the handoff to the dictionary
parser:36

1_800_the_quiz/phone_words.rb

def read_dictionary(dictionary)

File.foreach(dictionary) do |word|

word.downcase!

word.delete!("^a-z")

next if word.empty? or word.size < 2 or word.size > 7

chars = word.enum_for(:each_byte)

digits = chars.map { |c| self.class.encode(c.chr) }.join

@words[digits] << word unless @words[digits].include?(word)

end

end

This method is just a line-by-line read of the dictionary. I normalize the
words to a common case37 and toss out punctuation and whitespace.
The method skips any words below two characters in length as well as
any more than seven. Finally, words are split into characters, using
the handy enum_for() from the Enumerator library (see the sidebar, on
page 157, for details), and then digit encoded and added to the correct
group. The code first verifies that a word wasn’t already in the group,
though, ensuring that our transformations don’t double up any words.

The Search

With setup out of the way, we are ready to search a given phone number
for word matches. First, we need a simple helper method that checks

35Be warned, this step assumes we are dealing with an American English dictionary.
36Notice the $DEBUG message hidden in this section of code. Ruby will automatically

set that variable to true when passed the -d command-line switch, so it’s a handy way to
embed trace instructions you may want to see during debugging.

37 Even though we’re going to end up with uppercase results, I generally normalize
case down, not up. Some languages make distinctions between concepts like title case
and uppercase, so downcasing is more consistent.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 13. 1-800-THE-QUIZ 156

a digit sequence against the beginning of a number. If it matches, we
want it to return what’s left of the original number:

1_800_the_quiz/phone_words.rb

def self.match(number, digits)

if number[0, digits.length] == digits

number[digits.length..-1]

else

nil

end

end

With that, we are finally ready to search:

1_800_the_quiz/phone_words.rb

def search(number, chunks = Array.new)

@words.inject(Array.new) do |all, (digits, words)|

if remainder = self.class.match(number, digits)

new_chunks = (chunks.dup << words)

if remainder.empty?

all.push(new_chunks)

else

all.push(*search(remainder, new_chunks))

end

else

all

end

end

end

The idea here is to match numbers against the front of the phone num-
ber, passing the matched words and what’s left of the String down recur-
sively, until there is nothing left to match.

The method returns an Array of chunks, each of which is an Array of all
the words that can be used at that point. For example, a small part of
the search results for the quiz example shows that the number could
start with the word USER followed by -8-AX, TAX, or other options:

[...

[["user"], ["8"], ["aw", "ax", "ay", "by"]],

[["user"], ["taw", "tax", "tay"]],

...]

The recursion keeps this method short and sweet, though you may
need to work through the flow a few times to understand it.

The key to successful recursion is always having an exit condition, the
point at which you stop recursing. Here, the method recurses only
when there are remaining digits in the number. Once we’ve matched
them all or failed to find any matches, we’re done.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 13. 1-800-THE-QUIZ 157

Enumerator: A Hidden Treasure

The Enumerator library is a hidden treasure of Ruby’s standard
library that was undocumented until very recently. Here’s a
quick tour to get you started using it today.

The main function of the library is to add an enum_for() method
to Object, also aliased as to_enum(). Call this method, pass-
ing a method name and optionally some parameters, and
you’ll receive an Enumerable object using the passed method
as each(). As you can see in the dictionary-parsing code of this
chapter, that’s a handy tool for switching Strings to iterate over
characters, among other uses.

As an added bonus, the library adds two more iterators to Enu-
merable:

>> require "enumerator"

=> true

>> (1..10).each_slice(2) { |slice| p slice }

[1, 2]

[3, 4]

[5, 6]

[7, 8]

[9, 10]

=> nil

>> (1..10).each_cons(3) { |consecutive| p consecutive }

[1, 2, 3]

[2, 3, 4]

[3, 4, 5]

[4, 5, 6]

[5, 6, 7]

[6, 7, 8]

[7, 8, 9]

[8, 9, 10]

=> nil

Cleaning Up and Showing Results

Obviously the results returned from the search aren’t printable as they
stand. Let’s use some more recursion to flatten the nested arrays down
to strings.

1_800_the_quiz/phone_words.rb

def chunks_to_strings(chunks)

chunk, *new_chunks = chunks.dup

if new_chunks.empty?

chunk.map { |word| word.upcase }

else

chunk.map do |word|

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 13. 1-800-THE-QUIZ 158

chunks_to_strings(new_chunks).map { |words| "#{word.upcase}-#{words}" }

end.flatten

end

end

Again the idea behind this method is trivial: peel a single word group
off, and combine it with all the other combinations generated through
recursion of the remaining groups. Logically, the exit condition here
is when we reach the final word group, and we can just return those
words when that happens.

The class requires just one more public interface method to tie it all
together:

1_800_the_quiz/phone_words.rb

def number_to_words(phone_number)

warn "Searching..." if $DEBUG

results = search(phone_number)

warn "Preparing output..." if $DEBUG

results.map! { |chunks| chunks_to_strings(chunks) }

results.flatten!

results.reject! { |words| words =~ /\d-\d/ }

results.sort!

results

end

This method runs the workflow. Perform a search, convert the results
to Strings, remove bogus results, clean up, and return the fruits of our
labor. A caller of this method provides a phone number and receives
ready-to-print word replacements.

Here’s the last bit of code that implements the quiz interface:

1_800_the_quiz/phone_words.rb

if __FILE__ == $0

dictionary = if ARGV.first == "-d"

ARGV.shift

PhoneDictionary.new(ARGV.shift)

else

PhoneDictionary.new("/usr/share/dict/words")

end

ARGF.each_line do |phone_number|

puts dictionary.number_to_words(phone_number.delete("^0-9"))

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 13. 1-800-THE-QUIZ 159

Additional Exercises

1. Unroll the search() method presented in this chapter to build an
iterative solution.

2. Benchmark the recursion and iterative versions of the code. What
was the speed increase?

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_quiz

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Best of Ruby Quiz

pragmaticprogrammer.com/titles/fr_quiz

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/fr_quiz.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/fr_quiz
http://www.pragmaticprogrammer.com/catalog

