
Extracted from:

Best of Ruby Quiz
Volume One

This PDF file contains pages extracted from Best of Ruby Quiz, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

ANSWER 23. COUNTDOWN 239

Answer 23From page 53

Countdown
At first glance, the search space for this problem looks very large. The
six source numbers can be ordered various ways, and you don’t have to
use all the numbers. Beyond that, you can have one of four operators
between each pair of numbers. Finally, consider that 1 * 2 + 3 is different
from 1 * (2 + 3). That’s a lot of combinations.

However, we can prune that large search space significantly. Let’s start
with some simple examples and work our way up. Addition and multi-
plication are commutative, so we have this:

1 + 2 = 3 and 2 + 1 = 3

1 * 2 = 2 and 2 * 1 = 2

We don’t need to handle it both ways. One will do.

Moving on to numbers, the example in the quiz used two 5s as source
numbers. Obviously, these two numbers are interchangeable. The first
5 plus 2 is 7, just as the second 5 plus 2 is 7.

What about the possible source number 1? Anything times 1 is itself,
so there is no need to check multiplication of 1. Similarly, anything
divided by 1 is itself. No need to divide by 1.

Let’s look at 0. Adding and subtracting 0 is pointless. Multiplying by 0
takes us back to 0, which is pretty far from a number from 100 to 999
(our goal). Dividing 0 by anything is the same story, and dividing by 0
is illegal, of course. Conclusion: 0 is useless. Now, you can’t get 0 as a
source number; but, you can safely ignore any operation(s) that result
in 0.

Those are all single-number examples, of course. Time to think bigger.
What about negative numbers? Our goal is somewhere from 100 to

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 240

999. Negative numbers are going the wrong way. They don’t help, so
you can safely ignore any operation that results in a negative number.

Finally, consider this:

(5 + 5) / 2 = 5

The previous is just busywork. We already had a 5; we didn’t need to
make one. Any operations that result in one of their operands can be
ignored.

Using simplifications like the previous, you can get the search space
down to something that can be brute-force searched pretty quickly, as
long as we’re dealing only with six numbers.

Pruning Code

Dennis Ranke submitted the most complete example of pruning, so let’s
start with that. Here’s the code:

countdown/pruning.rb

class Solver

class Term

attr_reader :value, :mask

def initialize(value, mask, op = nil, left = nil, right = nil)

@value = value

@mask = mask

@op = op

@left = left

@right = right

end

def to_s

return @value.to_s unless @op

"(#@left #@op #@right)"

end

end

def initialize(sources, target)

printf "%s -> %d\n", sources.inspect, target

@target = target

@new_terms = []

@num_sources = sources.size

@num_hashes = 1 << @num_sources

the hashes are used to check for duplicate terms

(terms that have the same value and use the same

source numbers)

@term_hashes = Array.new(@num_hashes) { {} }

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/countdown/pruning.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 241

enter the source numbers as (simple) terms

sources.each_with_index do |value, index|

each source number is represented by one bit in the bit mask

mask = 1 << index

p mask

p value

term = Term.new(value, mask)

@new_terms << term

@term_hashes[mask][value] = term

end

end

end

The Term class is easy enough. It is used to build tree-like representa-
tions of math operations. A Term can be a single number or @left Term,
@right Term, and the @op joining them. The @value of such a Term would
be the result of performing that math.

The tricky part in this solution is that it uses bit masks to compare
Terms. The mask is just a collection of bit switches used to represent
the source numbers. The bits correspond to the index for that source
number. You can see this being set up right at the bottom of initialize().

These mask-to-Term pairs get stored in @term_hashes. This variable
holds an Array, which will be indexed with the mask of source num-
bers in a Term. For example, an index mask of 0b000101 (5 in decimal)
means that the first and third source numbers are used, which are
index 0 and 2 in both the binary mask and the source list.

Inside the Array, each index holds a Hash. Those Hashes hold decimal
value to Term pairs. The values are numbers calculated by combining
Terms. For example, if our first source number is 100 and the second is
2, the Hash at Array index 0b000011 (3) will eventually hold the keys 50,
98, 102, and 200. The values for these will be the Term objects showing
the operators needed to produce the number.

All of this bit twiddling is very memory efficient. It takes a lot less
computer memory to store 0b000011 than it does [100, 2].

countdown/pruning.rb

class Solver

def run

collision = 0

best_difference = 1.0/0.0

next_new_terms = [nil]

until next_new_terms.empty?

next_new_terms = []

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/countdown/pruning.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 242

temporary hashes for terms found in this iteration

(again to check for duplicates)

new_hashes = Array.new(@num_hashes) { {} }

iterate through all the new terms (those that weren't yet used

to generate composite terms)

@new_terms.each do |term|

iterate through the hashes and find those containing terms

that share no source numbers with 'term'

index = 1

term_mask = term.mask

skip over indices that clash with term_mask

index += collision - ((collision - 1) & index) while

(collision = term_mask & index) != 0

while index < @num_hashes

hash = @term_hashes[index]

iterate through the hashes and build composite terms using

the four basic operators

hash.each_value do |other|

new_mask = term_mask | other.mask

hash = @term_hashes[new_mask]

new_hash = new_hashes[new_mask]

sort the source terms so that the term with the larger

value is left

(we don't allow fractions and negative subterms are not

necessairy as long as the target is positive)

if term.value > other.value

left_term = term

right_term = other

else

left_term = other

right_term = term

end

[:+, :-, :*, :/].each do |op|

don't allow fractions

next if op == :/ &&

left_term.value % right_term.value != 0

calculate value of composite term

value = left_term.value.send(op, right_term.value)

don't allow zero

next if value == 0

ignore this composite term if this value was already

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 243

found for a different term using the same source

numbers

next if hash.has_key?(value) || new_hash.has_key?(value)

new_term = Term.new(value, new_mask, op, left_term,

right_term)

if the new term is closer to the target than the

best match so far print it out

if (value - @target).abs < best_difference

best_difference = (value - @target).abs

printf "%s = %d (error: %d)\n", new_term, value,

best_difference

return if best_difference == 0

end

remember the new term for use in the next iteration

next_new_terms << new_term

new_hash[value] = new_term

end

end

index += 1

index += collision - ((collision - 1) & index) while

(collision = term_mask & index) != 0

end

end

merge the hashes with the new terms into the main hashes

@term_hashes.each_with_index do |hash, index|

hash.merge!(new_hashes[index])

end

the newly found terms will be used in the next iteration

@new_terms = next_new_terms

end

end

end

That’s very well-commented code, so I won’t bother to break it all down.
I do want to point out a few things, though.

This method repeatedly walks through all of the @new_terms, combining
them with all the already found @term_hashes to reach new values. At
each step we build up a collection of next_new_terms that will replace
@new_terms when the process loops. Also being loaded is new_hashes,
which will be merged into @term_hashes, giving us more to expand on in
the next iteration.

Be sure to spot the two pieces of code for avoiding collisions. If we
find ourselves working with an index that matches the term_mask at any

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 244

point, we know we are duplicating work because we are working with
the same source list. In these cases, index gets bumped to move us
along.

The rest of the method is the pruning work we looked into at the start
of this discussion. The comments will point out what each section of
code is skipping.

Here’s the code you need to turn all that work into a solution:

countdown/pruning.rb

if ARGV[0] && ARGV[0].downcase == 'random'

ARGV[0] = rand(900) + 100

ARGV[1] = (rand(4) + 1) * 25

5.times {|i| ARGV[i + 2] = rand(10) + 1}

end

if ARGV.size < 3

puts "Usage: ruby #$0 <target> <source1> <source2> ..."

puts " or: ruby #$0 random"

exit

end

start_time = Time.now

Solver.new(ARGV[1..-1].map {|v| v.to_i}, ARGV[0].to_i).run

printf "%f seconds\n", Time.now - start_time

The previous solution is lightning fast. Run it a few times to see for
yourself. It can work so fast because heavy pruning allows it to skip a
lot of useless operations.

Coding Different Strategies

Next, I want to look at Brian Schröder’s solution. I won’t show the
whole thing here because it’s quite a lot of code. However, it can switch
solving methods as directed and even solve using fractions. Here’s the
heart of it:

countdown/countdown.rb

Search all possible terms for the ones that fit best.

Systematically create all terms over all subsets of the set of numbers in

source, and find the one that is closest to target.

#

Returns the solution that is closest to the target.

#

If a block is given, calls the block each time a better or equal solution

is found.

#

As a heuristic to guide the search, sort the numbers ascending.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/countdown/pruning.rb
http://media.pragprog.com/titles/fr_quiz/code/countdown/countdown.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 245

def solve_countdown(target, source, use_module)

source = source.sort_by{|i|-i}

best = nil

best_distance = 1.0/0.0

use_module::each_term_over(source) do | term |

distance = (term.value - target).abs

if distance <= best_distance

best_distance = distance

best = term

yield best if block_given?

end

end

return best

end

This method takes the target and source numbers in addition to a Module

(which I’ll return to in a minute) as parameters. The first line is the sort
mentioned in the comment. Then best and best_distance are initialized
to nil and infinity (1.0/0.0) to track the best solution discovered so far.

After the setup, the method calls into the each_term_over() method, pro-
vided by the Module it was called with. The Module to use is determined
by the interface code (not shown) based on the provided command-line
switches. There are four possible choices. Two deal with fractions while
two are integer only, and there is a recursive and “memoized” version
for each number type. The program switches solving strategies based
on the user’s requests. (This is a nice use of the Strategy design pat-
tern.)

Here is each_term_over() in the ModuleRecursive::Integral:

countdown/countdown-recursive.rb

module Recursive

Allow only integral results

module Integral

Call the given block for each term that can be constructed over a set

of numbers.

#

Recursive implementation that calls a block each time a new term has been

stitched together. Returns each term multiple times.

#

This version checks that only integral results may result.

#

Here I explicitly coded the operators, because there is not

much redundance.

#

This may be a bit slow, because it zips up through the whole callstack

each time a new term is created.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/countdown/countdown-recursive.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 246

def Integral.each_term_over(source)

if source.length == 1

yield source[0]

else

source.each_partition do | p1, p2 |

each_term_over(p1) do | op1 |

yield op1

each_term_over(p2) do | op2 |

yield op2

if op2.value != 0

yield Term.new(op1, op2, :+)

yield Term.new(op1, op2, :-)

yield Term.new(op1, op2, :'/') if op2.value != 1 and

op1.value % op2.value == 0

end

if op1.value != 0

yield Term.new(op2, op1, :-)

if op1.value != 1

yield Term.new(op2, op1, :'/') if op2.value % op1.value == 0

yield Term.new(op1, op2, :*) if op2.value != 0 and

op2.value != 1

end

end

end

end

end

end

end

end

end

This method recursively generates terms in every possible combination.
This is a key point to a working solution. If you try adding a number at
a time, you generate solutions looking like these:

(((num op num) op num) op num)...

A tricky example posted to Ruby Talk by daz, "Target: 926, Source: 75,
2, 8, 5, 10, 10," shows off the folly of this approach. The only answer is
the following:

(75 - 5 + 8) * (2 + 10) - 10

As you can see, the 2 + 10 term must be built separately from the 75 - 5

+ 8 term, and then the two can be combined.

Getting back to the previous code, the each_partition() method it uses
was added to Array in a different section of the code (not shown). It
returns “each true partition (containing no empty set) exactly once.”

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 247

Term objects (not shown) just manage their operands and operator, pro-
viding mainly String representation and result evaluation.

The block we’re yielding to is the block passed by solve_countdown(),
which we examined earlier. It simply keeps track of the best solution
generated so far.

The interesting part of all this is the same method in a different mod-
ule. The listing on the next page is the each_term_over() method from
Memoized::Integral.

The result of this method is the same, but it uses a technique called
memoization to work faster. When Terms are generated in here, they
get added to the Hash memo. After that, all the magic is in the very
first line, which simply skips all the work the next time those source
numbers are examined.

This trades memory (the Hash of stored results) for speed (no repeat
work). That’s why the solution provides other options too. Maybe the
target platform won’t have the memory to spare. This is a handy tech-
nique showcased in a nice implementation.

Additional Exercises

1. Try adding some pruning or memoization to your solution. Time
solving the same problem before and afterward to see if whether
speeds up the search.

2. You can find a great web-based interactive solver for this number
game at http://www.crosswordtools.com/numbers-game/. Extend your
solution to provide a similar web interface.

CLICK HERE to purchase this book now.

http://www.crosswordtools.com/numbers-game/
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 23. COUNTDOWN 248

countdown/countdown-memoized.rb

module Memoized

module Integral

Call the given block for each term that can be constructed over

a set of numbers.

#

Recursive implementation that calls a block each time a new term

has been stitched together. Returns each term multiple times.

#

This version checks that only integral results may result.

#

Here I explicitly coded the operators, because there is not much

redundance.

#

This may be a bit slow, because it zips up through the whole

callstack each time a new term is created.

def Integral.each_term_over(source, memo = {}, &block)

return memo[source] if memo[source]

result = []

if source.length == 1

result << source[0]

else

source.each_partition do | p1, p2 |

each_term_over(p1, memo, &block).each do | op1 |

each_term_over(p2, memo, &block).each do | op2 |

if op2.value != 0

result << Term.new(op1, op2, :+)

result << Term.new(op1, op2, :-)

result << Term.new(op1, op2, :'/') if op2.value != 1 and

op1.value % op2.value == 0

end

if op1.value != 0

result << Term.new(op2, op1, :-)

if op1.value != 1

result << Term.new(op2, op1, :'/') if op2.value %

op1.value == 0

result << Term.new(op1, op2, :*) if op2.value != 0 and

op2.value != 1

end

end

end

end

end

end

result.each do | term | block.call(term) end

memo[source] = result

end

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/countdown/countdown-memoized.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Best of Ruby Quiz

pragmaticprogrammer.com/titles/fr_quiz

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/fr_quiz.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/fr_quiz
http://www.pragmaticprogrammer.com/catalog

