
Extracted from:

Best of Ruby Quiz
Volume One

This PDF file contains pages extracted from Best of Ruby Quiz, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

ANSWER 8. ROMAN NUMERALS 112

Answer 8From page 18

Roman Numerals
Solving this quiz is easy, but how easy? Well, the problem gives us the
conversion chart, which is just crying out to be a Hash:

roman_numerals/simple.rb

ROMAN_MAP = { 1 => "I",

4 => "IV",

5 => "V",

9 => "IX",

10 => "X",

40 => "XL",

50 => "L",

90 => "XC",

100 => "C",

400 => "CD",

500 => "D",

900 => "CM",

1000 => "M" }

That’s the version from my code, but most solutions used something
very similar.

From there we just need to_roman() and to_arabic() methods, right?
Sounded like too much work for a lazy bum like me, so I cheated. If
you build a conversion table, you can get away with just doing the con-
version one way:

roman_numerals/simple.rb

ROMAN_NUMERALS = Array.new(3999) do |index|

target = index + 1

ROMAN_MAP.keys.sort { |a, b| b <=> a }.inject("") do |roman, div|

times, target = target.divmod(div)

roman << ROMAN_MAP[div] * times

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 113

This is the to_roman() method many solutions hit on. I just used mine
to fill an Array. The algorithm here isn’t too tough. Divide the target
number by each value there is a Roman numeral for copy the numeral
that many times reduce the target, and repeat. Ruby’s divmod() is great
for this.

From there, it’s trivial to wrap a Unix filter around the Array. However,
I do like to validate input, so I did one more little prep task:

roman_numerals/simple.rb

IS_ROMAN = / ^ M{0,3}

(?:CM|DC{0,3}|CD|C{0,3})

(?:XC|LX{0,3}|XL|X{0,3})

(?:IX|VI{0,3}|IV|I{0,3}) $ /ix

IS_ARABIC = /^(?:[123]\d{3}|[1-9]\d{0,2})$/

That first Regexp is a validator for the Roman letter combinations we
accept, split up by powers of ten. The second Regexp is a pattern to
match 1..3999, a number in the range we can convert to and from.

Now, we’re ready for the Unix filter wrapper:

roman_numerals/simple.rb

if __FILE__ == $0

ARGF.each_line() do |line|

line.chomp!

case line

when IS_ROMAN then puts ROMAN_NUMERALS.index(line) + 1

when IS_ARABIC then puts ROMAN_NUMERALS[line.to_i - 1]

else raise "Invalid input: #{line}"

end

end

end

In English that says, for each line of input, see whether it matches
IS_ROMAN, and if it does, look it up in the Array. If it doesn’t match
IS_ROMAN but does match IS_ARABIC, index into the Array to get the
match. If none of that is true, complain about the broken input.

Saving Some Memory

If you don’t want to build the Array, you just need to create the other
converter. It’s not hard. J E Bailey’s script did both, so let’s look at
that:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 114

roman_numerals/dual_conversions.rb

#!/usr/bin/env ruby

@data = [

["M" , 1000],

["CM" , 900],

["D" , 500],

["CD" , 400],

["C" , 100],

["XC" , 90],

["L" , 50],

["XL" , 40],

["X" , 10],

["IX" , 9],

["V" , 5],

["IV" , 4],

["I" , 1]

]

@roman = %r{^[CDILMVX]*$}

@arabic = %r{^[0-9]*$}

def to_roman(num)

reply = ""

for key, value in @data

count, num = num.divmod(value)

reply << (key * count)

end

reply

end

def to_arabic(rom)

reply = 0

for key, value in @data

while rom.index(key) == 0

reply += value

rom.slice!(key)

end

end

reply

end

$stdin.each do |line|

case line

when @roman

puts to_arabic(line)

when @arabic

puts to_roman(line.to_i)

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/dual_conversions.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 115

Joe Asks. . .

toRoman() or to_roman()?

The methods in J E’s solution were originally toRoman() and
toArabic(). These method names use an unusual (in Ruby cir-
cles) naming convention often referred to as camelCase. Typi-
cal Ruby style is to name methods and variables in snake_case
(such as to_roman() and to_arabic()). We do typically use a
variant of the former (with a capital first letter) in the names
of classes and modules, though.

Why is this important?

Well, with any language first you need to learn the grammar,
but eventually you want to know the slang, right? Same thing.
Someday you may want to write Ruby the way that Ruby gurus
do.

I told you we all used something similar to my Hash. Here it’s just an
Array of tuples.

Right below that, you’ll see J E’s data identifying Regexp declarations.
They’re not as exact as my versions, but certainly they are easier on the
eyes.

Next we see a to_roman() method, which looks very familiar. The imple-
mentation is almost identical to mine, but it comes out a little cleaner
here since it isn’t used to load an Array.

Then we reach the method of interest, to_arabic(). The method starts by
setting a reply variable to 0. Then it hunts for each Roman numeral in
the rom String, increments reply by that value, and removes that numeral
from the String. The ordering of the @data Array ensures that an XL or
IV will be found before an X or I.

Finally, the code provides the quiz-specified Unix filter behavior. Again,
this is very similar to my own solution, but with conversion routines
going both ways.

Romanizing Ruby

Those are simple solutions, but let’s jump over to Dave Burt’s code for
a little Ruby voodoo. Dave’s code builds a module, RomanNumerals, with

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 116

to_integer() and from_integer(), similar to what we’ve discussed previ-
ously. The module also defines is_roman_numeral?() for checking exactly
what the name claims and some helpful constants such as DIGITS, MAX,
and REGEXP.

roman_numerals/roman_numerals.rb

Contains methods to convert integers to Roman numeral strings, and vice versa.

module RomanNumerals

Maps Roman numeral digits to their integer values

DIGITS = {

'I' => 1,

'V' => 5,

'X' => 10,

'L' => 50,

'C' => 100,

'D' => 500,

'M' => 1000

}

The largest integer representable as a Roman numerable by this module

MAX = 3999

Maps some integers to their Roman numeral values

@@digits_lookup = DIGITS.inject({

4 => 'IV',

9 => 'IX',

40 => 'XL',

90 => 'XC',

400 => 'CD',

900 => 'CM'}) do |memo, pair|

memo.update({pair.last => pair.first})

end

Based on Regular Expression Grabbag in the O'Reilly Perl Cookbook, #6.23

REGEXP = /^M*(D?C{0,3}|C[DM])(L?X{0,3}|X[LC])(V?I{0,3}|I[VX])$/i

Converts +int+ to a Roman numeral

def self.from_integer(int)

return nil if int < 0 || int > MAX

remainder = int

result = ''

@@digits_lookup.keys.sort.reverse.each do |digit_value|

while remainder >= digit_value

remainder -= digit_value

result += @@digits_lookup[digit_value]

end

break if remainder <= 0

end

result

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 117

Converts +roman_string+, a Roman numeral, to an integer

def self.to_integer(roman_string)

return nil unless roman_string.is_roman_numeral?

last = nil

roman_string.to_s.upcase.split(//).reverse.inject(0) do |memo, digit|

if digit_value = DIGITS[digit]

if last && last > digit_value

memo -= digit_value

else

memo += digit_value

end

last = digit_value

end

memo

end

end

Returns true if +string+ is a Roman numeral.

def self.is_roman_numeral?(string)

REGEXP =~ string

end

end

I doubt we need to go over that code again, but I do want to point
out one clever point. Notice how Dave uses a neat dance to keep
things like IV out of DIGITS. In doing so, we see the unusual construct
memo.update({pair.last => pair.first}), instead of the seemingly more natural
memo[pair.last] = pair.first. The reason is that the former returns the Hash

itself, satisfying the continuous update cycle of inject().

Anyway, the module is a small chunk of Dave’s code, and the rest is
fun. Let’s see him put it to use:

roman_numerals/roman_numerals.rb

class String

Considers string a Roman numeral,

and converts it to the corresponding integer.

def to_i_roman

RomanNumerals.to_integer(self)

end

Returns true if the subject is a Roman numeral.

def is_roman_numeral?

RomanNumerals.is_roman_numeral?(self)

end

end

class Integer

Converts this integer to a Roman numeral.

def to_s_roman

RomanNumerals.from_integer(self) || ''

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 118

First, he adds converters to String and Integer. This allows you to code
things such as the following:

puts "In the year #{1999.to_s_roman} ..."

Fun, but there’s more. For Dave’s final magic trick he defines a class:

roman_numerals/roman_numerals.rb

Integers that look like Roman numerals

class RomanNumeral

attr_reader :to_s, :to_i

@@all_roman_numerals = []

May be initialized with either a string or an integer

def initialize(value)

case value

when Integer

@to_s = value.to_s_roman

@to_i = value

else

@to_s = value.to_s

@to_i = value.to_s.to_i_roman

end

@@all_roman_numerals[to_i] = self

end

Factory method: returns an equivalent existing object if such exists,

or a new one

def self.get(value)

if value.is_a?(Integer)

to_i = value

else

to_i = value.to_s.to_i_roman

end

@@all_roman_numerals[to_i] || RomanNumeral.new(to_i)

end

def inspect

to_s

end

Delegates missing methods to Integer, converting arguments to Integer,

and converting results back to RomanNumeral

def method_missing(sym, *args)

unless to_i.respond_to?(sym)

raise NoMethodError.new(

"undefined method '#{sym}' for #{self}:#{self.class}")

end

result = to_i.send(sym,

*args.map {|arg| arg.is_a?(RomanNumeral) ? arg.to_i : arg })

case result

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 119

when Integer

RomanNumeral.get(result)

when Enumerable

result.map do |element|

element.is_a?(Integer) ? RomanNumeral.get(element) : element

end

else

result

end

end

end

If you use the factory method get() to create these objects, it’s efficient
with reuse, always giving you the same object for the same value.

Note that method_missing() basically delegates to Integer at the end, so
you can treat these objects mostly as Integer objects. This class allows
you to code things like thus:

IV = RomanNumeral.get(4)

IV + 5 # => IX

Even better, though, is that Dave removes the need for that first step
with the following:

roman_numerals/roman_numerals.rb

Enables uppercase Roman numerals to be used interchangeably with integers.

They are autovivified RomanNumeral constants

Synopsis:

4 + IV #=> VIII

VIII + 7 #=> XV

III ** III #=> XXVII

VIII.divmod(III) #=> [II, II]

def Object.const_missing sym

unless RomanNumerals::REGEXP === sym.to_s

raise NameError.new("uninitialized constant: #{sym}")

end

const_set(sym, RomanNumeral.get(sym))

end

This makes it so that Ruby will automatically turn constants like IX into
RomanNumeral objects as needed. That’s just smooth.

Finally, the listing at the top of the facing page shows Dave’s actual
solution to the quiz using the previous tools:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

ANSWER 8. ROMAN NUMERALS 120

roman_numerals/roman_numerals.rb

Quiz solution: filter that swaps Roman and arabic numbers

if __FILE__ == $0

ARGF.each do |line|

line.chomp!

if line.is_roman_numeral?

puts line.to_i_roman

else

puts line.to_i.to_s_roman

end

end

end

Additional Exercises

1. Modify your solution to scan free-flowing text documents, replac-
ing all valid Roman numerals with their Arabic equivalents.

2. Create a solution that maps out the conversions similar to the
first example in this discussion, but do it without using a 4,000-
element Array kept in memory.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://www.pragmaticprogrammer.com/titles/fr_quiz

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Best of Ruby Quiz

pragmaticprogrammer.com/titles/fr_quiz

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/fr_quiz.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/fr_quiz
http://www.pragmaticprogrammer.com/catalog

