
Extracted from:

Rails for Java Developers

This PDF file contains pages extracted from Rails for Java Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 5

Coordinating Activities with
ActionController

Controllers coordinate the activities of views and models in the MVC

paradigm. Controllers are responsible for the following:

• Collecting input from the user

• Creating model objects to handle the user’s request

• Selecting the appropriate view code to render

Along the way, controllers are responsible for logic that is associated

with the user request (as opposed to with a specific model object). Such

logic includes the following:

• Authentication and authorization

• Business rules that involve multiple model objects

• Auditing

• Error handling

In addition to these responsibilities, most web application frameworks

give controllers a web-specific responsibility as well. Web controllers

provide an object model wrapper for the idioms of the Web: URLs, HTTP

requests, headers, cookies, and so on. At the controller level, web appli-

cations are explicitly web programming. (By contrast, the model layer

code is much more likely to be reusable outside of a web app.) In Rails,

the ActionController library implements the controller layer. In this

chapter, we will introduce ActionController by comparing it to a Struts

application. We will start with basic CRUD and then drill in to more

advanced issues such as session management, filters, and caching.

ROUTING BASICS: FROM URL TO CONTROLLER+METHOD 136

5.1 Routing Basics: From URL to Controller+Method

To access a web application, you need a URL. For our Struts sample

application, the people list view lives at /appfuse_people/editPerson.html?method=Search.

How does this URL get routed to running code in a Java web applica-

tion? Typically, the first part of the name (appfuse_people) identifies

a .war file or directory on the server that corresponds to a particular

web application. Java applications often include an Ant task to copy

the application code and resources to the appropriate directory on the

server.

Download code/appfuse_people/build.xml

<target name="deploy-web" depends="compile-jsp" if="tomcat.home"

description="deploy only web classes to servlet container's deploy directory">

<echo message="Deploying web application to ${tomcat.home}/webapps"/>

<copy todir="${tomcat.home}/webapps/${webapp.name}">

<fileset dir="${webapp.target}"

excludes="**/web-test.xml,**/web.xml,**/*-resources.xml"/>

</copy>

</target>

For a Struts application, the next part of the name (editPerson.html)

is pattern matched to the Struts ActionServlet via a servlet and servlet-

mapping elements in web.xml. Many Struts applications use the dis-

tinctive .do suffix; in our example, we have followed AppFuse’s lead in

simply using .html:

Download code/appfuse_people/web/WEB-INF/web.xml

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.html</url-pattern>

</servlet-mapping>

These two steps do not exist in Rails development. Rails does not run

more than one web application within a process—if you want multiple

web applications, you run them in separate processes. Since all Rails

code is routed to the ActionController layer, you don’t have to take a

separate configuration step to specify “I want to use ActionController.”

Rails applications also do not copy files into the web server during

CLICK HERE to purchase this book now.

/appfuse_people/editPerson.html?method=Search
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/build.xml
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/web.xml
http://www.pragmaticprogrammer.com/titles/fr_r4j

ROUTING BASICS: FROM URL TO CONTROLLER+METHOD 137

development. During development, Rails code is written and executed

in a single directory tree. This is part of the reason that Rails appli-

cation development is so interactive: changes take effect immediately,

without a deploy step.

Most Java developers find ways to simplify these two steps. Frame-

works such as AppFuse create the appropriate build.xml and web.xml

settings for you. Inspired in part by Rails, many Java developers now

run their development code from the same directory, avoiding part of

the overhead of the compile/deploy cycle.

The more important part of routing happens within the Struts Action-

Servlet and Rails ActionController. Struts uses settings in struts-config.xml

to convert editPerson.html?method=Search into a method call:

<action

path="/editPerson"

type="com.relevancellc.people.webapp.action.PersonAction" ...

The path attribute matches editPerson to the class named by the type

attribute: PersonAction. Finally, the query string ?method=Search leads

us to the search method on PersonAction.

The Rails URL for the people list view is /people/list. Just as with Struts,

Rails uses routing to convert this URL into a method on an object. In

Rails, the routing is described not with XML but with Ruby code. Here

is a simple routing file:

Download code/people/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.connect ':controller/:action/:id'

end

The :controller portion of the route maps the first portion of the URL to

a controller class. A standard convention for capitalization and class

naming is used, so people becomes PeopleController. The mechanism

is general, so this routing entry also implies that a URL that begins

with foo will attempt to find a (nonexistent in this case) FooController.

The :action portion of the route maps the second location component

to a method. So, list invokes the list method. Again, the mechanism is

general, so /people/foo would attempt to find a nonexistent foo method

on the PeopleController. Finally, the :id maps to an id parameter, which

is optional. In methods such as create and update that need an object

to operate on, the id is conventionally a primary key.

CLICK HERE to purchase this book now.

/people/list
http://media.pragprog.com/titles/fr_r4j/code/code/people/config/routes.rb
http://www.pragmaticprogrammer.com/titles/fr_r4j

LIST AND SHOW ACTIONS: THE R IN CRUD 138

Many opponents of Rails have criticized this default routing because

they do not like the implied naming scheme. This entirely misses the

point. Rails default routing makes trivial things trivial. It is easy to bring

up a Rails server with a bunch of controllers that use this default route.

The design philosophy is “pay as you go.” The default routing gives you

something simple, generic, and free. If you want more control, you can

have that too, but you have to write some routing configuration, just

as you do in Struts. You will see more advanced routing in Section 5.6,

Routing in Depth, on page 153.

5.2 List and Show Actions: The R in CRUD

Now that we can route from URLs to code, let’s look at the code. In our

Struts application, /appfuse_people/editPerson.html?method=Search takes

us to the search method of PersonAction:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward search(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

PersonManager mgr = (PersonManager) getBean("personManager");

List people = mgr.getPeople(null);

request.setAttribute(Constants.PERSON_LIST, people);

return mapping.findForward("list");

}

The signature of the method contains specific parameters for accessing

the web object model (request and response) and the Struts object model

(mapping and form). The object model is then used to load the people,

and forward to the view, through the following steps:

1. On line 5, we look up the manager object that will actually do the

work.

2. On line 6, we get the people object that will be rendered in the

view.

3. On line 7, we add the people to the request, which makes the people

available to the view.

4. Finally on line 8, we select the view that should render the list.

Behind the scenes is a lot of layering. The manager in its turn delegates

to a DAO, which actually does the data access. The manager and DAO

layers require two Java source files each: an interface to the layer and at

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://www.pragmaticprogrammer.com/titles/fr_r4j

LIST AND SHOW ACTIONS: THE R IN CRUD 139

least one implementation. In addition, the connections between layers

are configured using Spring Dependency Injection. At the end of the

chain, here is the code that does the work:

Download code/appfuse_people/src/dao/com/relevancellc/people/dao/hibernate/PersonDaoHibernate.java

public List getPeople(Person person) {

return getHibernateTemplate().find("from Person");

}

If you understand how this all works in Struts, the transition to Rails

is straightforward. A typical Rails controller does the same steps. This

is not obvious at first, because at every step, the Rails approach makes

a different stylistic choice. Here is the code:

Download code/people/app/controllers/people_controller.rb

def list

@search = params[:search]

if @search.blank?

@person_pages, @people = paginate :people, :per_page => 10

else

query = ['first_name = :search or last_name = :search',

{:search=>@search}]

@person_pages, @people = paginate :people,

:per_page => 10, :conditions=>query

end

end

The Rails list has no parameters! Of course, the same kinds of informa-

tion are available. The difference is that the request and response objects

are member variables (with accessor methods) on the controller. The

Java philosophy here is “Explicit is better. It is easy to read a Struts

action and see what objects you should be working with.” The Rails

philosophy is “Implicit is better, at least for things that are common.

This is a web app, so requests and responses are pretty common! Learn

them once, and never have to type or read them again.”

The Rails list does not delegate to intermediate layers. There is no man-

ager or DAO layer, just a call to paginate, which in turn directly accesses

ActiveRecord. This is certainly an important difference, and we want to

be careful in laying out why we think both the Java and Rails strategies

make sense. Imagine the following conversation between Rita the Rails

developer and Jim the Java developer:

Rita: Why do you bother with all those layers?

Jim: The layers make it easier to test the code and to reuse the code

in different contexts. For example, the manager layer has no web depen-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/dao/com/relevancellc/people/dao/hibernate/PersonDaoHibernate.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://www.pragmaticprogrammer.com/titles/fr_r4j

LIST AND SHOW ACTIONS: THE R IN CRUD 140

dencies, so that code can be reused in a Swing application or over an

RMI connection.

Rita: Still, it must take forever to write all that extra code.

Jim: It isn’t so bad. We have much more elaborate IDE support in the

Java world. Plus, tools such as AppFuse or Maven can be used to do a

lot of the boilerplate work. Aren’t you worried that your Rails app is a

dead end and that your code is inflexible and untestable?

Rita: Not at all. I am building the layers I need right now. If I need more

layers later, it is much easier to add them. Dynamic typing makes it much

easier to plug in new code or execute the existing code in a new context.

Jim: But with dynamic typing, how do you make sure your code works?

I am used to the compiler making sure that variables are of the correct

type.

Rita: We validate our code with unit tests, functional tests, integration

tests, black-box tests, code reviews, and code coverage. Do you do the

same?

Jim: You bet!

In short, the Java approach (lots of layers, dependency injection, good

tooling) is a reasonable response to Java’s class-centric, statically typed

object model. The Ruby approach (layers on demand, less tooling) is a

reasonable approach to Ruby’s object-centric, dynamically typed object

model.

The Rails list method creates person_pages and people variables, but it

does nothing to make these variables available to the view. Again, the

difference is that Rails does things implicitly. When you create instance

variables in a controller method, they are automatically copied into the

view using reflection. This approach takes advantage of the fact that

Ruby classes are open, and this approach can pick up arbitrary vari-

ables at any time.

Finally, the Rails code does not appear to select a view to render. Again,

this is because Rails provides an implicit default behavior. When you

exit a controller method, the default behavior is to render a view tem-

plate file named app/views/{controllername}/{methodname}.rhtml. As you

will see next, Rails provides a render method that you can use to over-

ride this behavior.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_r4j

LIST AND SHOW ACTIONS: THE R IN CRUD 141

Now that you have seen the list action, you will look at the code for show-

ing an edit form for a single person. Our Struts implementation uses a

single action named edit for both the “new” and “update” varieties:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward edit(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

PersonForm personForm = (PersonForm) form;

if (personForm.getId() != null) {

PersonManager mgr = (PersonManager) getBean("personManager");

Person person = mgr.getPerson(personForm.getId());

personForm = (PersonForm) convert(person);

updateFormBean(mapping, request, personForm);

}

return mapping.findForward("edit");

}

This code goes through the same series of steps you saw earlier: Call

into another layer to get the object, put the object into request scope,

and select the mapping to the view. The novel part is interacting with

the form bean. The form is an instance of PersonForm. The form bean

represents the web form data associated with a person. Because the

form is functionally a subset of a Person model, the form bean class can

be autogenerated. You can accomplish this with an XDoclet tag at the

top of the Person class:

@struts.form include-all="true" extends="BaseForm"

To display an edit form, the edit action needs to copy data from the

model person to its form representation. The convert method does this.

You could write individual convert methods for each model/form pair in

an application. A far simpler approach is to use JavaBean introspection

to write a generic convert method. Our approach uses a generic convert

method that is included in AppFuse.

The Rails equivalent uses two actions: new and edit:

Download code/people/app/controllers/people_controller.rb

def edit

@person = Person.find(params[:id])

end

def new

@person = Person.new

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://www.pragmaticprogrammer.com/titles/fr_r4j

CREATE, UPDATE, AND DELETE ACTIONS 142

The Rails version does the same things but in a different way. In Rails

applications, there is no distinction between model objects and form

beans; ActiveRecord objects serve both purposes. As a result, there is

no form argument or convert step. The Rails version has two methods

because Rails applications typically render “new” and “edit” with two

different templates. (This is not as redundant as it sounds; the two

templates delegate to a single partial template that actually draws the

form.)

5.3 Create, Update, and Delete Actions

Create, update, and delete actions tend to have more interesting code

because they alter state. As a result, they have to deal with validation,

status messages, and redirection. Here is a Struts action method that

will save or update a person:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward save(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

ActionMessages messages = new ActionMessages();

PersonForm personForm = (PersonForm) form;

boolean isNew = ("".equals(personForm.getId()));

PersonManager mgr = (PersonManager) getBean("personManager");

Person person = (Person) convert(personForm);

mgr.savePerson(person);

if (isNew) {

messages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage("person.added"));

saveMessages(request.getSession(), messages);

return mapping.findForward("mainMenu");

} else {

messages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage("person.updated"));

saveMessages(request, messages);

return mapping.findForward("viewPeople");

}

}

Let’s begin by considering the happy case where the user’s edits are

successful. Much of this code is similar to previous examples; the new

part is the addition of a status message. In line 5 we create an Action-

Messages instance to hold a status message, and in lines 12–14 and

17–19 we save the ActionMessages into the request so they can be ren-

dered in the view.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://www.pragmaticprogrammer.com/titles/fr_r4j

CREATE, UPDATE, AND DELETE ACTIONS 143

Here is the Rails version of update:

Download code/people/app/controllers/people_controller.rb

def update

@person = Person.find(params[:id])

if @person.update_attributes(params[:person])

flash[:notice] = 'Person was successfully updated.'

redirect_to :action => 'show', :id => @person

else

render :action => 'edit'

end

end

The actual update happens on line 3. update_attributes is an ActiveRe-

cord method that sets multiple attributes all at once. Like its cousins

create and save, update_attributes automatically performs validations.

Since the params[:person] hash contains all the name/value pairs from

the input form, a single call to update_attributes does everything neces-

sary to update the @person instance.

Like the Struts update, the Rails version of update sets a status mes-

sage. In line 4, the message “Person was successfully updated.” is

added to a special object called the flash. The flash is designed to deal flash

with the fact that updates are generally followed by redirects.

So, saving a status into a member variable does no good—after the

redirect, the status variable will be lost. Saving into the session instead

will work, but then you have to remember to remove the status message

from the session later. And that is exactly what the flash does: saves

an object into the session and then automatically removes the status

message after the next redirect.

The flash is a clever trick. Unfortunately, the data that is typically put

into the flash is not clever at all. Out of the box, Rails does not support

internationalization, and status messages are stored directly as strings

(usually in English).

Contrast this with the Struts application, which stores keys such as

“person.added.” The view can later use these keys to look up an appro-

priately localized string. The lack of internationalization support is one

of the big missing pieces in Rails. If your application needs internation-

alization, you will have to roll your own or use a third-party library.

After a successful update operation, the controller should redirect to

a URL that does a read operation. This makes it less likely that a user

will bookmark a URL that does an update, which will lead to odd results

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://www.pragmaticprogrammer.com/titles/fr_r4j

CREATE, UPDATE, AND DELETE ACTIONS 144

later. Some possible choices are a show view of the object just edited, a

list view of similar objects, or a top-level view. The Struts version does

the redirect by calling findForward:

return mapping.findForward("mainMenu");

To verify that this forward does a redirect, you can consult the struts.xml

configuration file. Everything looks good:

<global-forwards>

<forward name="mainMenu" path="/mainMenu.html" redirect="true"/>

<!-- etc. -->

</global-forwards>

Where Struts uses findForward for both renders and redirects, Rails has

two separate methods. After a save, the controller issues an explicit

redirect:

redirect_to :action => 'show', :id => @person

Notice that the redirect is named in terms of actions and parameters.

Rails runs its routing table “backward” to convert from actions and

parameters back into a URL. When using default routes, this URL will

be /people/show/(some_int).

Now that you have seen a successful update, we’ll show the case where

the update fails. Both Struts and Rails provide mechanisms to validate

user input.

In Struts, the Validator object automatically validates form beans,

based on declarative settings in an XML file. Validations are associ-

ated with the form. To specify that the first name is required, you can

use XML like this:

Download code/appfuse_people/snippets/person_form.xml

<form name="personForm">

<field property="firstName" depends="required">

<arg0 key="personForm.firstName"/>

</field>

<!-- other fields -->

</form>

The original intention of the discrete validation language was separa-

tion of concerns. Sometimes it is more convenient to keep related con-

cerns together. Instead of writing the validation.xml file by hand, we gen-

erate the validations with XDoclet annotations in the Person model class

in this way:

CLICK HERE to purchase this book now.

/people/show/(some_int)
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/snippets/person_form.xml
http://www.pragmaticprogrammer.com/titles/fr_r4j

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

Interested in improving your career? Want to make yourself more valuable to your orga-

nization, and avoid being outsourced? Then read My Job Went to India, and find out great

ways to keep yours. If you’re interested in moving your career more towards a team lead

or mangement position, then read what happens Behind Closed Doors.

My Job Went to India
The job market is shifting. Your current job may be

outsourced, perhaps to India or eastern Europe.

But you can save your job and improve your career

by following these practical and timely tips. See

how to: • treat your career as a business • build

your own brand as a software developer • develop

a structured plan for keeping your skills up to date

• market yourself to your company and rest of the

industry • keep your job!

My Job Went to India: 52 Ways to Save Your Job

Chad Fowler

(185 pages) ISBN: 0-9766940-1-8. $19.95

http://pragmaticprogrammer.com/titles/mjwti

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

http://pragmaticprogrammer.com/titles/mjwti
http://pragmaticprogrammer.com/titles/rdbcd

Pragmatic Methodology
Need to get software out the door? Then you want to see how to Ship It! with less fuss and

more features. And every developer can benefit from the Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress on

your project. • You want to make yourself and your

team more valuable. • You’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility

throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •

Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Facets of Ruby Series
See how to integrate Ruby with all varieties of today’s technology in Enterprise Integration

with Ruby. And speaking of today’s finest, you’ll need a good text editor, too. On the Mac,

we recommend TextMate.

Enterprise Integration with Ruby
See how to use the power of Ruby to integrate all

the applications in your environment. Lean how to

• use relational databases directly, and via

mapping layers such as ActiveRecord • Harness

the power of directory services • Create, validate,

and read XML documents for easy information

interchange • Use both high- and low-level

protocols to knit applications together

Enterprise Integration with Ruby

Maik Schmidt

(360 pages) ISBN: 0-9766940-6-9. $32.95

http://pragmaticprogrammer.com/titles/fr_eir

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/fr_eir
http://pragmaticprogrammer.com/titles/textmate

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the language. The Pick-

axe: Programming Ruby: The Pragmatic Programmer’s Guide, Second Edition. This is the

definitive guide for all Ruby programmers. For Rails, we have the definitive reference

guide as well: the award-winning and best-selling Agile Web Development with Rails.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit

testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is newly updated Second

Edition, which goes beyond the Jolt-award winning

first edition with new material on:

• Migrations • RJS templates • Respond_to

• Integration Tests • Additional ActiveRecord

features • Another year’s worth of Rails best

practices

Agile Web Development with Rails: Second

Edition

Dave Thomas, and David Heinemeier Hansson with

Leon Breedt, Mike Clark, James Duncan Davidson,

Justin Gehtland, and Andreas Schwarz

(750 pages) ISBN: 0-9776166-3-0. $39.95

http://pragmaticprogrammer.com/titles/rails2

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/rails2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help programmers stay on top of their

game.

Visit Us Online
Rails for Java Developers Home Page

http://pragmaticprogrammer.com/titles/fr_r4j

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: http://pragmaticprogrammer.com/titles/fr_r4j.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/fr_r4j
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
http://pragmaticprogrammer.com/titles/fr_r4j
www.pragmaticprogrammer.com/catalog

	Contents
	Foreword
	Preface
	Getting Started with Rails
	Setting Up Ruby and Rails
	Rails App in Fifteen Minutes
	The Rails Development Cycle
	Finding Information in Online Documentation
	Editors and IDEs
	Running the Samples
	Rails Environments
	How Rails Connects to Databases
	Rails Support Scripts

	Programming Ruby
	Primitive Types
	Strings
	Objects and Methods
	Collections and Iteration
	Control Flow
	Defining Classes
	Identity and Equality
	Inheritance
	Controlling Access with Access Specifiers
	Raising and Handling Exceptions

	Ruby Eye for the Java Guy
	Extending Core Classes
	Mutable and Immutable Objects
	Packages and Namespaces
	Deploying Code
	Delegation
	Polymorphism and Interfaces
	Duck Typing
	Mixins
	Functions

	Accessing Data with ActiveRecord
	Getting Connected
	Managing Schema Versions with Migrations
	Mapping Data to Classes
	Create, Read, Update, and Delete: Access Patterns
	Validating Data Values
	Lifecycle Callbacks
	Associations and Inheritance
	Transactions, Concurrency, and Performance
	Conserving Resources with Connection Pooling
	Resources

	Coordinating Activities with ActionController
	Routing Basics: From URL to Controller+Method
	List and Show Actions: The R in CRUD
	Create, Update, and Delete Actions
	Tracking User State with Sessions
	Managing Cross-Cutting Concerns with Filters and Verify
	Routing in Depth
	Logging, Debugging, and Benchmarking
	Resources

	Rendering Output with ActionView
	Creating Basic .rhtml Files
	Minimizing View Code with View Helpers
	Writing Custom Helpers
	Reuse with Layouts and Partials
	Building HTML Forms
	Building HTML with Markaby
	Caching Pages, Actions, and Fragments
	Creating Dynamic Pages with Ajax
	Rendering JavaScript with RJS
	Black-Box Testing with Selenium
	Conclusions
	Resources

	Testing
	Getting Started with Test::Unit
	Rails Testing Conventions
	Rails Extensions to Test::Unit
	Integration Testing
	Rails Testing Examples
	Measuring Code Coverage with rcov
	Testing Interactions with Mock Objects
	Reducing Dependencies with Stub Objects
	Advanced Considerations
	Resources

	Automating the Development Process
	Rake Basics
	Setting Rake Options: It's Just Ruby
	Custom Rake Tasks: It's Just Ruby
	Using Rake in Rails Applications
	Continuous Integration with Cerberus
	Resources

	Creating and Invoking Web Services
	RESTful Web Services
	SOAP Web Services
	YAML and XML Compared
	JSON and Rails
	XML Parsing
	Ruby XML Output
	Creating XML with Builder
	Curing Your Data Headache
	Resources

	Security
	Authentication with the acts_as_authenticated Plugin
	Authorization with the Authorization Plugin
	Testing Authentication and Authorization
	Preventing the Top-Ten Web Security Flaws
	Resources

	Java to Ruby Dictionary
	Bibliography
	Structure of a Rails Project
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

