
Extracted from:

Rails Recipes

This PDF file contains pages extracted from Rails Recipes, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Recipe 61

Adding Support for

Localization

Credit

Long-time Ruby programmer and designer Bruce Williams (who, in a

past life, worked as an Arabic translator) wrote this recipe.

Problem

Your application is (or will be) used all over the world. You’d like it to

support multiple languages and format information such as times and

currency specifically for each user’s locale.

Ingredients

Josh Harvey and Jeremy Voorhis’s Globalize plugin, installable from

the root of your Rails application with the following:

bruce> ruby script/plugin install \

http://svn.globalize-rails.org/svn/globalize/globalize/trunk

Solution

For this recipe, we’re going to model a small online store that specializes

in Middle Eastern and Asian food imports. The store’s customer base is

made up primarily of non-English-speaking Middle Eastern and Asian

people, so localization is a must.

Assuming you have the Globalize plugin installed, the first thing you’ll

need to do is to set up its required tables and data:

bruce> rake globalize:setup

Next, you’ll need to set your base language and default locale in con-

fig/environment.rb. You can add this anywhere at the end of the file. For

an English speaker in the United States, it would be:

include Globalize

Locale.set_base_language 'en-US'

Locale.set 'en-US'

61. ADDING SUPPORT FOR LOCALIZATION 234

International Characters

By default, Rails isn’t set up to handle non-English characters.
Here’s what you’ll need to do to make it work:

1. Add the following to your config/environment.rb file:

$KCODE = 'u'
require 'jcode'

This sets Ruby’s character encoding to UTF-8.

2. Next you need to set your database connection to trans-
fer using UTF-8. For MySQL and PostgreSQL, you can do this
by adding a line to your database’s configuration in your
config/database.yml file. For MySQL it would be this:

encoding: utf8

And for PostgreSQL:

encoding: unicode

For SQLite, simply compiling UTF-8 support in is all you need
to do. For other database systems, consult the system’s
documentation on how to set character encoding for
connections.

3. Set the character encoding and collation for the
database and/or tables you’ll be accessing. Collation

refers to the method that will be used for sorting. If you
change your character set to Unicode but leave your
database’s collation untouched, you may end up with
some unexpected results coming from ORDER BY clauses.
For details on how to set character set and collation for
your database, check your database software’s manual.

4. Set encoding information in the content type your appli-
cation returns for each request. The easiest way to do this
is to put an after_filter() in your ApplicationController. Here’s an
example filter that will work in most cases (including RJS
templates):

after_filter :set_charset
def set_charset

unless headers["Content-Type"] =~ /charset/i
headers["Content-Type"] ||= ""
headers["Content-Type"] += "; charset=utf-8"

end
end

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_rr

61. ADDING SUPPORT FOR LOCALIZATION 235

International Characters (continued)

5. Add encoding information to your templates. Even if you
are transferring documents using Unicode, if a user saves
them to his or her local hard disk, there needs to be some
way of identifying the encoding. Prepend the following
inside your layout’s <head> section:

<![[CDATA
<meta http-equiv="Content-Type"

content="text/html; charset=utf-8">
]]>

As long and drawn out as this procedure may seem, it’s still not
a total solution. There are major fixes in the works for Ruby 2.0,
but for now internationalization is a difficult area for Ruby. There
are several efforts underway to work around this. At the time of
this writing they are all still experimental. Watch the Rails mailing
list for announcements.

Congratulations, you’re ready to start translating!! Yª�J�Ó �I	K�� ! ¼ðQ�.Ó
Now, digging into our little grocery store application, we’ll turn our

attention to setting the user’s language/locale. We’ll allow the user to

do this in two ways:

• Set it when the user logs in (for users who log in before browsing

our products)

• Allow users who are not logged in to manually set it (for users

who want to browse first, creating or logging into an account right

before checking out)

We’ll use these two techniques to set a session variable and have a

before_filter() that will call Locale.set() for each request. This will involve

adding code to AccountsController (our controller that handles authentica-

tion) to set the session variable and adding a before_filter in ApplicationCon-

troller to use Locale.set() to set the locale for each request.

Here’s AccountsController; all we do here is set the session variable in login

and the manual change_locale actions:

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_rr

61. ADDING SUPPORT FOR LOCALIZATION 236

Download Globalize/app/controllers/accounts_controller.rb

class AccountsController < ApplicationController

def login

case request.method

when :post

begin

user = User.authenticate(@params[:email], @params[:password])

session[:user] = user.id

session[:locale] = user.locale

go_to = session[:destination]

session[:destination] = nil

redirect_to (go_to || home_url) unless performed?

rescue User::InvalidLoginException => e

flash[:notice] = e.message

redirect_to login_url unless performed?

end

when :get

end

end

def logout

@session[:user] = nil

redirect_to home_url

end

def change_locale

session[:locale] = params[:locale] unless params[:locale].blank?

redirect_to :back

end

end

Nothing special appears there. In login we just use the stored locale

value for the user, and in change_locale we use a CGI parameter. Now

let’s look at our before_filter in ApplicationController that will handle actually

setting the locale during each request:

before_filter :set_locale

def set_locale

Locale.set session[:locale] unless session[:locale].blank?

true

end

So, we have a working system that can handle the selection of a locale.

This is where things start to get fun.

Probably the easiest way to preview the usefulness of localization is in

views; we’ll get into models a bit later.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/Globalize/app/controllers/accounts_controller.rb
http://www.pragmaticprogrammer.com/titles/fr_rr

61. ADDING SUPPORT FOR LOCALIZATION 237

Globalize gives you a few easy-to-use string methods to handle view

translations; translate() and t() (which is just an alias) are for simple

translations, and /() is for printf-looking functionality. Here are a few

examples from our application:

<% unless params[:search].blank? %>

<p><%= "Found %d products." / @products.size %></p>

<% end %>

For quick, easy, little bits of translation, use the t() method. We use

that on the page where customers can manage their order:

<%= link_to "Remove".t, :action => 'remove', :id => item.product_id %>

It turns out String#/() is really just syntactic sugar for String#translate() with

a few arguments preset. Refer to Globalize’s core_ext.rb for details.

Offering locale-friendly versions of dates and currency is also simply

done, courtesy of the loc() (localize()) method:

<%= Time.now.loc "%H:%M %Z" %>

So, it turns out translating views is really easy. Since the translations

themselves are stored in globalize_translations, it’s just a matter of throwing

up some scaffolding to edit them.

Now, in our little grocery app, the majority of what we’re going to be

displaying will be model data: our products. For this to really work as

a truly international app, we’ll have to be able to translate attributes on

the model as well. It won’t do to have “Place Order” in 25 languages if

the only way to figure out what you’re buying is by looking at pictures.

Good news—this is where Globalize really shines. Let’s take a quick

look at our Product model for an example:

class Product < ActiveRecord::Base

translates :name, :description

end

The translates() method call lets Globalize know it will be handling trans-

lation of the name() and description() attributes. Now let’s look at how you

save a model with multiple translations by adding a new product:

Locale.set 'en-US'

prod = Product.create(:name => "Yemenese Coffee",

:description => "Coffee from the South of Yemen")

Locale.set 'ar-LB'

prod.reload

prod.name = "
�éJ
 	JÖß
 �èñê�̄"

prod.description = " 	áÒJ
Ë � H. ñ 	Jk. 	áÓ �èñê�̄"
prod.save

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_rr

61. ADDING SUPPORT FOR LOCALIZATION 238

As you can see, Locale.set is very important. When a model’s attributes

are handled by Globalize, Globalize interprets any assignments to those

attributes as their translation in the current locale. Globalize makes

the process easy by handling the details behind the scenes using the

globalize_translations table and some creative overriding of some of ActiveRe-

cord::Base’s internals (such as find()); this is a detail that you’ll need to

keep in mind if you’re using find_by_sql(), which it doesn’t override.

The locale name given to Locale.set consists of a language code (from glob-

alize_languages) and a country code (from globalize_countries). This is nice, but

as translations are stored by language, not locale, if we wanted a specific

translation for Canadian English, for instance, a new language row would

need to be added to the globalize_languages table.

Localization is fun stuff—it can seem a little complex, but with Global-

ize, it’s easily manageable and simple to get running.

Discussion

Not all languages are read from left to right! Be kind to languages

such as Arabic and Hebrew and support right-handed page layouts

(hint: load another style sheet by checking Locale.active.language.direction()

to change text alignment, and maybe even place labels for form fields

on the left or right hand side depending on direction).

We certainly haven’t touched on everything relating to Globalize; it has

features such as support for pluralization, routing to locale-specific

templates, and the Currency class that we haven’t even looked at here.

Globalize is just chock-full of goodies, so check it out—this was just an

appetizer!

Also See

The Globalize website29 has more background on the plugin, including

a FAQ, examples, and information on more complex topics.

29http://www.globalize-rails.org

CLICK HERE to purchase this book now.

http://www.globalize-rails.org
http://www.pragmaticprogrammer.com/titles/fr_rr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help programmers stay on top of their game.

Visit Us Online
Rails Recipes Home Page

pragmaticprogrammer.com/titles/fr_rr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/fr_rr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: support@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_rr
www.pragmaticprogrammer.com/catalog

