
Extracted from:

Rails Recipes

This PDF file contains pages extracted from Rails Recipes, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Recipe 5

Creating a Drag-and-Drop

Sortable List

Credit

Thanks to Bruce Williams for code that inspired this recipe.

Problem

Your application has a model with a list that should be sortable. You

want to manage the sort order of the list in the database, and you

want to give your users a snazzy, modern, drag-and-drop interface with

which to maintain the sort order.

Solution

Let’s say we’re creating an application for managing grocery lists. With

the size of today’s American grocery superstore, it’s important to devise

a shopping strategy before you hit the aisles. Otherwise, you can waste

precious hours of your life following unoptimized shopping routes.

The Active Record migration file for our shopping optimization applica-

tion will look like the following:

Download DragAndDropSortableList/db/migrate/001_add_person_and_grocery_lists_and_food_items_tables.rb

class AddPersonAndGroceryListsAndFoodItemsTables < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column :name, :string

end

create_table :grocery_lists do |t|

t.column :name, :string

t.column :person_id, :integer

end

create_table :food_items do |t|

t.column :grocery_list_id, :integer

t.column :position, :integer

t.column :name, :string

t.column :quantity, :integer

end

end

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/db/migrate/001_add_person_and_grocery_lists_and_food_items_tables.rb

5. CREATING A DRAG-AND-DROP SORTABLE LIST 22

def self.down

drop_table :people

drop_table :grocery_lists

drop_table :food_items

end

end

As you can see, we have tables to support people, their grocery lists,

and the items that go on each list (along with the quantity we need of

each item). This is all standard Active Record has_many() fare, except for

the position column in the food_items table. This column is special, as we’ll

see in a moment.

The associated model files are similarly short and sweet. A Person has

many GroceryList objects:

Download DragAndDropSortableList/app/models/person.rb

class Person < ActiveRecord::Base

has_many :grocery_lists

end

And each GroceryList has a list of FoodItem objects on it, which will be

retrieved by the food_items table’s position column:

Download DragAndDropSortableList/app/models/grocery_list.rb

class GroceryList < ActiveRecord::Base

has_many :food_items, :order => :position

belongs_to :person

end

Finally, we get to the spice. Class FoodItem contains Active Record’s

acts_as_list() declaration, which allows its containing object (GroceryList) to

“automagically” manage its sort order:

Download DragAndDropSortableList/app/models/food_item.rb

class FoodItem < ActiveRecord::Base

belongs_to :grocery_list

acts_as_list :scope => :grocery_list

end

The :scope parameter tells acts_as_list() that the sort order is relevant

within the context of a single grocery_list_id. This is so one grocery list’s

sort order doesn’t affect any other list’s order.

The column name position is special to acts_as_list(). By convention, Rails

will automatically use this column name to manage sort order when

a model is declared acts_as_list(). If we needed to use a nonstandard

column name here, we could have passed the :column parameter, but

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/models/person.rb
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/models/grocery_list.rb
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/models/food_item.rb
http://www.pragmaticprogrammer.com/titles/fr_rr

5. CREATING A DRAG-AND-DROP SORTABLE LIST 23

position makes sense for our humble grocery list manager, so we’ll leave

well enough alone.

After running the migration and creating the model files, let’s fire up

the Rails console and play with this new structure:

chad> ruby script/console

>> kelly = Person.create(:name => "Kelly")

=> #<Person:0x26ec854 ...>>

>> list = kelly.grocery_lists.create(:name => "Dinner for Tibetan New Year Party")

=> #<GroceryList:0x26b9788 ...>>

>> list.food_items.create(:name => "Bag of flour", :quantity => 1)

=> #<FoodItem:0x26a8898 ...>>

>> list.food_items.create(:name => "Pound of Ground Beef", :quantity => 2)

=> #<FoodItem:0x269b60c ...>>

>> list.food_items.create(:name => "Clove of Garlic", :quantity => 5)

=> #<FoodItem:0x26937e0 ...>>

So we now have a person named Kelly in our database who seems to be

planning a party for the Tibetan New Year celebration. So far, she has

three items on her list. She’s not done with the list yet, obviously—you

can’t make momos with just these three ingredients! Let’s see what

happened to that position column when we created these objects:

>> list.food_items.find_by_name("Pound of Ground Beef").position

=> 2

>> list.food_items.find_by_name("Bag of flour").position

=> 1

Cool! Active Record has updated the position column for us! acts_as_list()

also sets up a bunch of nice convenience methods for performing tasks

such as selecting the next item (in order) in the list or moving an item’s

position up or down. Let’s not get all caught up in the model just

now, though. We have enough implemented that we can get to the fun

stuff—drag and drop!

As always, if you’re going to do fancy Ajax stuff, you need include the

necessary JavaScript libraries somewhere in your HTML. I usually cre-

ate a standard layout and throw the JavaScript in there. Let’s create

the layout in app/views/layouts/standard.rhtml and then fill it in as follows:

Download DragAndDropSortableList/app/views/layouts/standard.rhtml

<html>

<head>

<%= javascript_include_tag :defaults %>

</head>

<body>

<%= yield %>

</body>

</html>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/views/layouts/standard.rhtml
http://www.pragmaticprogrammer.com/titles/fr_rr

5. CREATING A DRAG-AND-DROP SORTABLE LIST 24

Next, pretending that we already have some kind of interface for cre-

ating a list and associating it with a person, let’s create the controller

and action from whence we’ll reorder our list. We’ll create a controller

in app/controllers/grocery_list_controller.rb with an action called show(). The

beginning of the controller should look like the following:

Download DragAndDropSortableList/app/controllers/grocery_list_controller.rb

class GroceryListController < ApplicationController

layout "standard"

def show

@grocery_list = GroceryList.find(params[:id])

end

...

Note that we’ve included the standard.rhtml layout, and we’ve defined a

basic action that will simply find a grocery list based on a supplied

parameter:

Next we create the associated view in app/views/grocery_list/show.rhtml:

Download DragAndDropSortableList/app/views/grocery_list/show.rhtml

<h2><%= @grocery_list.person.name %>'s Grocery List</h2>

<h3><%= @grocery_list.name %></h3>

<ul id="grocery-list">

<% @grocery_list.food_items.each do |food_item| %>

<li id="item_<%= food_item.id %>">

<%= food_item.quantity %> units of <%= food_item.name %>

<% end %>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/controllers/grocery_list_controller.rb
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/views/grocery_list/show.rhtml
http://www.pragmaticprogrammer.com/titles/fr_rr

5. CREATING A DRAG-AND-DROP SORTABLE LIST 25

Again, this is nothing too fancy. This is standard Action View read-only

material. Do note, though, that we are autogenerating unique element

ids for the tags. This is necessary when we move on to the sorting

code, so don’t skip it in this step. We can see what this page looks

like by starting our development server and pointing our browser to

(assuming the default port) http://localhost:3000/grocery_list/show/listid, where

listid is the id of the GroceryList model object we created in the console.

Now let’s make the list sortable. At the end of our show.rhtml, we’ll add

the following:

Download DragAndDropSortableList/app/views/grocery_list/show.rhtml

<%= sortable_element 'grocery-list',

:url => { :action => "sort", :id => @grocery_list },

:complete => visual_effect(:highlight, 'grocery-list')

%>

This helper generates the JavaScript necessary to turn our unordered

list into a dynamic, drag-and-drop sortable form. The first parameter,

grocery-list, refers to the ID of the item on the current HTML page that

should be transformed into a sortable list. The :url option specifies the

elements, such as action and controller, that will make up the URL

that will be called when a sorting change is made. We have specified

the sort() action of the current controller, appending the current grocery

list’s ID. Finally, the :complete option sets up a visual effect to take place

when the sort() action has finished.

Let’s get that sort() action implemented so we can watch this thing in

action! In the grocery_list_controller.rb, we’ll add a sort() action that looks

like this:

Download DragAndDropSortableList/app/controllers/grocery_list_controller.rb

def sort

@grocery_list = GroceryList.find(params[:id])

@grocery_list.food_items.each do |food_item|

food_item.position = params['grocery-list'].index(food_item.id.to_s) + 1

food_item.save

end

render :nothing => true

end

First we select the grocery list by the supplied ID. Then we iterate

through the items on the list and change each item’s position to match

its index in the grocery-list parameter. The grocery-list parameter is gener-

ated automatically by the sortable_element() helper and creates an ordered

Array of the list items’ IDs. Since our position columns start with 1 and

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/views/grocery_list/show.rhtml
http://media.pragprog.com/titles/fr_rr/code/DragAndDropSortableList/app/controllers/grocery_list_controller.rb
http://www.pragmaticprogrammer.com/titles/fr_rr

5. CREATING A DRAG-AND-DROP SORTABLE LIST 26

an Array’s index starts with 0, we add 1 to the index value before saving

the position.

Finally, we explicitly tell Rails that this action should not render any-

thing. Since the visual output of sorting a list is the list itself (which

we’re already displaying), we let the action complete its work silently.

Had we wanted to update the HTML page with the action’s results, we

could have added the :update option to our sortable_element() call, passing

it the ID of the HTML element to populate with our action’s results.

If we refresh the grocery list show() page with the sortable_element() addi-

tion, we can now drag items up and down the list to change their order

both on the page and in the database.

Also See

Chapter 15 of Agile Web Development with Rails [TH05] contains a more

thorough introduction to acts_as_list().

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_rr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help programmers stay on top of their game.

Visit Us Online
Rails Recipes Home Page

pragmaticprogrammer.com/titles/fr_rr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/fr_rr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: support@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_rr
www.pragmaticprogrammer.com/catalog

