
Extracted from:

Rails Recipes

This PDF file contains pages extracted from Rails Recipes, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com


Recipe 19

Tagging Your Content

Problem

By now, it’s a fairly safe bet that you (and many of the users of your soft-

ware) have heard of this thing called social networking. It was recently

all the rage. Cutting edge. A delight to use and a differentiator for

applications that used it.

Now, though, it’s expected that web applications will employ some kind

of social networking effect where relevant. If you’re looking for books,

you expect the online bookstore to leverage the shopping behavior of the

masses to help you find books you might like. Or music. Or whatever

you might be trying to do or explore. And, though it’s possible to hire

computer scientists to develop algorithms for predicting what each user

is going to be looking for, it’s a lot cheaper and easier to let your users

do the work.

So after the dust has settled, the heart of what’s left in the “social”

applications arena is tagging. You put simple, textual, nonhierarchical

identifiers on items in an application, and the cumulative effect of all

the application’s users doing this creates a self-organizing system. It’s

an idea made popular by sites like del.icio.us and Flickr that has now

taken over the Web. If you’re lucky, tags on your site will help users

find new favorite things they didn’t even know they liked.

So, how do we do this in Rails?

Ingredients

• David Heinemeier Hansson’s acts_as_taggable plugin, installable from

the root of your Rails application with the following:

chad> ruby script/plugin install acts_as_taggable

+ ./acts_as_taggable/init.rb

+ ./acts_as_taggable/lib/README

+ ./acts_as_taggable/lib/acts_as_taggable.rb

+ ./acts_as_taggable/lib/tag.rb

+ ./acts_as_taggable/lib/tagging.rb

+ ./acts_as_taggable/test/acts_as_taggable_test.rb



19. TAGGING YOUR CONTENT 74

• Rails 1.1 or higher. acts_as_taggable( ) relies on polymorphic associ-

ations, a feature added after Rails 1.0 (see Recipe 23, Polymorphic

Associations—has_many :whatevers, on page 96).

Solution

Assuming you have already installed the acts_as_taggable plugin, the first

step in adding tagging to your application is to set up the database to

hold the tags and their associations with your models. The migration

for the database should look something like the following:

Download Tagging/db/migrate/001_add_database_structure_for_tagging.rb

class AddDatabaseStructureForTagging < ActiveRecord::Migration

def self.up

create_table :taggings do |t|

t.column :taggable_id, :integer

t.column :tag_id, :integer

t.column :taggable_type, :string

end

create_table :tags do |t|

t.column :name, :string

end

end

def self.down

drop_table :taggings

drop_table :tags

end

end

So now we have the ability to tag something. We just need something

to tag! Let’s make a simple model to tag. In your own application, of

course, you’d already have models to tag. But for the sake of demon-

stration, let’s create a simple model for tracking contacts in an address

book application. As always, we’ll use an Active Record migration:

Download Tagging/db/migrate/002_add_contacts_table.rb

class AddContactsTable < ActiveRecord::Migration

def self.up

create_table :contacts do |t|

t.column :name, :string

t.column :address_line1, :string

t.column :address_line2, :string

t.column :city, :string

t.column :state, :string

t.column :postal_code, :string

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/Tagging/db/migrate/001_add_database_structure_for_tagging.rb
http://media.pragprog.com/titles/fr_rr/code/Tagging/db/migrate/002_add_contacts_table.rb
http://www.pragmaticprogrammer.com/titles/fr_rr


19. TAGGING YOUR CONTENT 75

def self.down

drop_table :contacts

end

end

Next we’ll generate the model and make it taggable. We don’t need to

create models for the actual Tag objects, because they’re included in the

acts_as_taggable plugin.

Download Tagging/app/models/contact.rb

class Contact < ActiveRecord::Base

acts_as_taggable

end

Believe it or not, we now have taggable contacts. Let’s look in the con-

sole:

chad> ruby script/console

Loading development environment.

>> c = Contact.create(:name => "Josef K", :address_line1 => "123 Main St.",

:address_line2 => "Apt. 2", :city => "Vienna",

:state => "Colorado", :postal_code => "54321")

=> #<Contact:0x267a8f8 @new_record=false, @base=#<Contact:0x267a8f8 ...>>

>> c.tag_with("friends colorado existentialists")

=> ["friends", "colorado", "existentialists"]

Here we created an instance of Contact and used the tag_with( ) method

to tag it with a space-delimited list of tags. The acts_as_taggable plugin

automatically parses the list and either creates new Tag instances or

associates existing ones. The associated tags are then available via the

tags( ) method on the model:

>> c.tags

=> [#<Tag:0x264f450 @attributes={"name"=>"friends", "id"=>"1"}>,

#<Tag:0x264f414 @attributes={"name"=>"colorado", "id"=>"2"}>,

#<Tag:0x264f3d8 @attributes={"name"=>"existentialists", "id"=>"3"}>]

Now if we were to create a new contact and tag it with an already exist-

ing tag, we’ll see that the existing instance of the tag in the database is

reused and associated with the model:

>> c2 = Contact.create(:name => "John Barth", :address_line1 => "432 South End Rd.",

:city => "Gotham", :state => "North Carolina", :postal_code => "12345")

=> #<Contact:0x26463c8 @new_record=false, @base=#<Contact:0x26463c8 ...>>

>> c2.tag_with("friends carolina pragmatists")

=> ["friends", "carolina", "pragmatists"]

>> c2.tags

=> [#<Tag:0x2605bc0 @attributes={"name"=>"friends", "id"=>"1"}>,

#<Tag:0x2605b84 @attributes={"name"=>"carolina","id"=>"4"}>,

#<Tag:0x2605b48 @attributes={"name"=>"pragmatists", "id"=>"5"}>]

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/models/contact.rb
http://www.pragmaticprogrammer.com/titles/fr_rr


19. TAGGING YOUR CONTENT 76

OK. Our models are ready to be tagged! Let’s get our heads out of

the console and put the tags to use on a real web application. Most

tag-enabled applications will want to do three tasks: assign tags to an

item, view an item’s tags, and search for items by tag. We’ll start with

the easiest part: viewing an item’s tags.

The first thing we need is the ability to actually view an item, so we’ll

whip up a simple action for that. The following is the beginning of our

ContactsController class:

Download Tagging/app/controllers/contacts_controller.rb

class ContactsController < ApplicationController

def list

@contacts = Contact.find(:all)

end

This is a typical list action. We’ll get a little fancier with the view and

throw in some user-friendly Ajax effects. After all, these days tagging

without Ajax is like wearing a mink coat with an old, worn-out pair

of tennis shoes. Our contacts/list.rhtml is a simple wrapper for a partial

template that contains the real display logic for our contacts:

Download Tagging/app/views/contacts/list.rhtml

<ul id="contacts-list">

<% if @contacts.blank? %>

<li class="no-contacts">No contacts to display</li>

<% else %>

<%= render :partial => "detail", :collection => @contacts %>

<% end %>

</ul>

We use a partial template because it separates the code into smaller

more manageable chunks and also because we’re going to use the

same partial view as the rendered response of our Ajax requests. The

template contacts/_detail.rhtml consists of two parts: the contact display

and a form for editing a contact’s tags. To support subsequent Ajax

requests, the display part is separated into another partial template,

contacts/_content.rhtml:

Download Tagging/app/views/contacts/_content.rhtml

<div class="name"><%= contact.name %>

<%=

if contact.tags.blank?

""

else

"(" + contact.tags.collect{|tag| tag.name}.join(", ") + ")"

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/controllers/contacts_controller.rb
http://media.pragprog.com/titles/fr_rr/code/Tagging/app/views/contacts/list.rhtml
http://media.pragprog.com/titles/fr_rr/code/Tagging/app/views/contacts/_content.rhtml
http://www.pragmaticprogrammer.com/titles/fr_rr


19. TAGGING YOUR CONTENT 77

%>

<%= link_to_function("Edit Tags", "Element.toggle($('#{form_id}'))") %>

</div>

<div class="address">

<%= contact.address_line1 %><br/>

<%= contact.address_line2 %><br/>

<%= contact.city %>, <%= contact.state %> <%= contact.postal_code %>

</div>

This is mostly typical display code. We display a contact’s tags, if any,

in parentheses next to the contact’s name. Here’s what it looks like in

the browser:

Each contact gets its own separate form for editing the contact’s tags.

This form starts out hidden and is displayed via the Element.toggle()( )

JavaScript call when a user clicks the “Edit Tags” link. Completing the

contact display implementation, here’s the full contacts/_detail.rhtml code

that creates the form for editing a contact’s tags and references the

display partial:

Don’t forget to include the necessary JavaScript files for the Ajax effects to

work. Somewhere in the <head> section of your view, you’ll need this:

<%= javascript_include_tag :defaults %>

Download Tagging/app/views/contacts/_detail.rhtml

<li class="contact-item">

<% form_id = "tag-form-for-#{detail.id}" %>

<%= form_remote_tag :url => {:action => "tag", :id => detail},

:complete => "Element.toggle($('#{form_id}'))",

:success => visual_effect(:shake, "contact-#{detail.id}"),

:update => "contact-#{detail.id}",

:html => {:id => form_id, :style => "display:none"} %>

<%= text_field_tag "tag_list",

detail.tags.collect{|t| t.name}.join(" "),

:size => 40 %>

<%= hidden_field_tag "form_id", form_id %>

<%= submit_tag "save" %>

<%= end_form_tag %>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/views/contacts/_detail.rhtml
http://www.pragmaticprogrammer.com/titles/fr_rr


19. TAGGING YOUR CONTENT 78

<div id="contact-<%=detail.id%>" class="contact-details">

<%= render :partial => "content",

:locals => {:contact => detail, :form_id => form_id} %>

</div>

</li>

We first generate an HTML ID for the form, which we use to toggle

the form’s display on and off. Then, since we want tag updates to be

as painlessly easy as possible, we create the form via form_remote_tag( ).

When a user submits the form, it will make an asynchronous HTTP

request in the background to the tag action of our ContactsController.

On successful completion of that request, the tag form will be toggled

closed, the contact display will be updated, and we’ll give the contact’s

display a little shake to let the user know something happened.

All that’s left to actually make tagging happen is to implement the tag

action. We already learned how to do this in our script/console session

earlier, so the implementation is easy:

Download Tagging/app/controllers/contacts_controller.rb

def tag

contact = Contact.find(params[:id])

contact.tag_with(params[:tag_list])

contact.save

render :partial => "content",

:locals => {:contact => contact, :form_id => params[:form_id]}

end

Now that we can display and edit a contact’s tags, all we lack is the

ability to search for a contact by tag. Since we already created the list( )

action, it makes sense to modify it for our needs instead of creating yet

another action that displays a list. Here’s the revised version of our

action:

Download Tagging/app/controllers/contacts_controller.rb

def list

@contacts = if tag_name = params[:id]

Tag.find_by_name(tag_name).tagged

else

Contact.find(:all)

end

end

This code reads a tag name supplied in the URI and finds items tagged

with that name. So, for example, you could call the application with the

URI /contacts/list/colorado to list only those contacts tagged with colorado.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_rr/code/Tagging/app/controllers/contacts_controller.rb
http://media.pragprog.com/titles/fr_rr/code/Tagging/app/controllers/contacts_controller.rb
http://www.pragmaticprogrammer.com/titles/fr_rr


19. TAGGING YOUR CONTENT 79

If no tag is supplied on the URI, it returns a list of all the contacts in

the database as before.

A nice feature of the acts_as_taggable( ) library is that you can use it to

tag more than one model type. For example, let’s say our little con-

tact database were to blossom into a full-blown personal information

manager and we added the ability to create both notes and calendar

appointments. Naturally, it would make sense to tag these features

along with our contacts.

Because acts_as_taggable( ) uses Active Record’s new polymorphic asso-

ciations feature, we can tag any model we’d like. All we need to do is

declare each model as acts_as_taggable( ), and the plugin takes care of the

rest for us.

Discussion

In our schema, we haven’t yet added any database indexes. For a large

application, it would make sense to create indexes on various fields in

the supplied tables, including but not limited to the name column of the

tags table.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/fr_rr


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help programmers stay on top of their game.

Visit Us Online
Rails Recipes Home Page

pragmaticprogrammer.com/titles/fr_rr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/fr_rr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: support@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_rr
www.pragmaticprogrammer.com/catalog

