
Extracted from:

Security on Rails

This PDF file contains pages extracted from Security on Rails, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-48-4

ISBN-13: 978-1-934356-48-7

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-16

http://www.pragprog.com

ENCRYPTING DATA 160

We can also employ a salt, which is a small amount of random data

added to the original message before the digest function processes it.

The salt is not a secret, and you need it to verify that a message matches

the digest. We cover salts in depth in Section 6.2, Adding Salts to the

Passwords, on page 104.

When Hashes Attack

Earlier we said the hash values produced for different inputs should

themselves be different. This determines the quality of a hash function.

When two inputs are found that return the same message digest, a

collision is said to have occurred. We know collisions exist because of

how hash functions are calculated; in fact, all hash functions have an

infinite number of collisions! How can this be? Hash functions yield a

fixed-length output with a variable-length input, so an infinitely large

input divided by a finite number is infinity. Don’t be alarmed just yet.

The goal is to create a hash function where collisions can’t occur. Col-

lision attacks do exist for many hash functions in use today, but the

context of their use plays a larger role in selection.

Choosing a Hash Function

We have only a handful of options when it comes to choosing a cryp-

tographic hash function. If our application must interoperate with an

existing application, the choice is typically made for us. For new devel-

opment, the SHA family of hash digests is preferred. While recent devel-

opments signal a possible collision attack against the SHA1 algorithm,

it remains the most widely accepted algorithm. It is also the current

U.S. standard. That could (and probably will) change in the future, but

the likely replacements are SHA-2 variants (SHA-224, SHA-256, SHA-

384, or SHA-512).

We, the authors, believe you should avoid the MD5 algorithm. Many

well-known collision attacks exist for MD5, and the cost of using the

SHA family is minimal.

8.2 Encrypting Data

It’s not uncommon to hear someone say, “We must encrypt this data.”

In most cases, the person who says it expects the person handling the

encryption to use block cipher encryption. Block ciphers are black boxes

that house the algorithms. We use block ciphers to encrypt information

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

ENCRYPTING DATA 161

called the plaintext. The plaintext is whatever we want to protect. Block

ciphers operate on a fixed length of data, called a block. Many variable length

block ciphers exist, but

they are not the norm.

Types of Cryptography

For the purposes of the book, we can divide cryptography into two main

groups: symmetric and asymmetric. Each group has its own strengths

and weaknesses, and neither group is always better than the other.

Symmetric cryptography

Symmetric cryptography gets its name from the way the same key is

used to encrypt and decrypt the information protected. We refer to

encrypted information as the ciphertext.

The following example illustrates basic usage of the OpenSSL module in

the Ruby standard library:

Download data_protection/aes_test.rb

Line 1 #!/bin/env ruby
- require 'openssl'
-

- plain_text = "To the limit!"
5 algorithm = "AES-128-CBC"
- aes = OpenSSL::Cipher::Cipher.new(algorithm)
- key = aes.random_key
-

- puts %(clear plain_text: "#{plain_text}")
10 puts %(symmetric key: "#{key.inspect}")

- puts %(cipher alg: "#{algorithm}")
-

- aes.encrypt(key)
- cipher_text = aes.update(plain_text)

15 cipher_text << aes.final
- puts %(encrypted plain_text: #{cipher_text.inspect})
-

- # clear the aes cipher
- aes.reset

20

- # decrypt and display output
- aes.decrypt(key)
- out = aes.update(cipher_text)
- out << aes.final

25 puts %(decrypted plaintext: "#{out}")

data_protection> ruby aes_test.rb

clear plain_text: "To the limit!"

symmetric key: ""\204\016<#p\216\310;\256\227\366\2064\017#\355""

cipher alg: "AES-128-CBC"

encrypted plain_text: "\376KS\001I\020\317\307i\202)\271+\0225K"

decrypted plaintext: "To the limit!"

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_secure/code/data_protection/aes_test.rb
http://www.pragprog.com/titles/fr_secure

ENCRYPTING DATA 162

Joe Asks. . .

Why Should I Use an OpenSSL random_key?

The question that really needs to be answered is this: why
should we use the OpenSSL::Cipher.random_key() class instead of
the Kernel::srand() class? The OpenSSL library uses a pseudo-
random number algorithm designed specifically for cryptog-
raphy. Producing a cryptographically random number gener-
ator is a nontrivial, computationally intensive task. Ruby’s Ker-

nel::srand() class is better than many others due to its underlying
Mersenne Twister algorithm, but our goal was never to replace
a true cryptographically random number generator. In short,
we should use OpenSSL because it provides an easy way to
defend against attacks that rely on sequence predictability.

This code begins by instantiating the OpenSSL::Cipher::Cipher class, pass-

ing the algorithm, key length, and block mode to the initialization() meth-

od. In our example, we use AES, 128-bit key length, and block mode

cipher block chaining.

We can generate a random key from an initialized Cipher object by

invoking the random_key() method. We can adjust the length of the

key based upon the key length value passed to the initialize() method.

Encryption and decryption occur by triggering the cipher mode with

the encrypt(key) and decrypt(key) methods. Once we put the cipher into

a mode, we call the update() method, passing it the plaintext or cipher-

text.

The next example illustrates how to use an initialization vector, or IV.

An initialization vector is an array of bits used to introduce additional

randomness to the ciphertext stream:

Download data_protection/aes_iv_test.rb

Line 1 #!/bin/env ruby
- require 'openssl'
-

- plain_text = "To the limit!"
5 algorithm = "AES-128-CBC"
- aes = OpenSSL::Cipher::Cipher.new(algorithm)
- key = aes.random_key
- iv = aes.random_iv
-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_secure/code/data_protection/aes_iv_test.rb
http://www.pragprog.com/titles/fr_secure

ENCRYPTING DATA 163

10 puts %(clear plain_text: "#{plain_text}")
- puts %(symmetric key: #{key.inspect})
- puts %(initialization vector: "#{iv.inspect}")
- puts %(cipher alg: "#{algorithm}")
-

15 aes.encrypt(key, iv)
- cipher_text = aes.update(plain_text)
- cipher_text << aes.final
- puts %(encrypted plain_text: #{cipher_text.inspect})
-

20 # clear the aes cipher
- aes.reset
-

- # decrypt and display output
- aes.decrypt(key, iv)

25 out = aes.update(cipher_text)
- out << aes.final
- puts %(decrypted plaintext: "#{out}")

data_protection> ruby aes_iv_test.rb

clear plain_text: "To the limit!"

symmetric key: "]\364\323T\317\377\216\264\221\216b\314;\237\021\267"

initialization vector: ""\004\332\235\320\315\250K\244\227}\232`\326_\237H""

cipher alg: "AES-128-CBC"

encrypted plain_text: "\3162jqS\224\305B\347:\267\350><N\203"

decrypted plaintext: "To the limit!"

You can see the only significant change between these two examples on

line 15. To use an initialization vector, we must pass it as the second

parameter to the encrypt() and decrypt() methods of the Cipher class.

When using block ciphers that support initialization vectors, we must

take care to use those vectors! Initialization vectors add additional

strength to the ciphertext, and they can help reduce the amount of

information that can be gleaned from the encrypted information. For

example, if we did not use an initialization vector and two plaintexts

were the same, the ciphertext of each message would be the same. This

might not pose an immediate problem, but it could become a serious

issue if someone learned one of the plaintext values.

Keep in mind the initialization vector is not a secret. It’s an array of

bytes required to decrypt the message. If we were to lose this informa-

tion, we would lose any means of decrypting the message. We should

store our initialization vector with the ciphertext. Some developers

choose to prepend the IV to the ciphertext, while others prefer to create

a separate field to hold the value. Each approach works, but prepend-

ing the value to the ciphertext confers a slight advantage because an

attacker would need to determine its location.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

ENCRYPTING DATA 164

Plain Text

Cipher Text

Cipher Public Key

CipherPrivate Key

Figure 8.3: Asymmetric encryption

We should use symmetric encryption when we face each of the following

situations:

• We need to encrypt and decrypt large amounts of data in a timely

manner. Symmetric cryptography is an order of magnitude faster

than asymmetric cryptography.

• We do not need key distribution because the same application

encrypts and decrypts the information.

• Key exchange can occur out of band, in an secure manner.

Asymmetric cryptography

Asymmetric cryptography uses two keys. Each key can be used to

decrypt ciphertexts, as long as the other key was used to encrypt it (see

Figure 8.3). This approach enables bidirectional message communica-

tion without divulging the private key. This is a remarkable concept.

Key distribution is a serious pain, and asymmetric cryptography can

help us alleviate it.

Let’s look at an example that uses the RSA algorithm to encrypt and

decrypt a message:

Download data_protection/rsa_test.rb

Line 1 #!/bin/env ruby
- require 'openssl'
- include OpenSSL
-

5 rsa = PKey::RSA.generate(512)
- txt = "Chunky Bacon"
- puts "Plain Text: #{txt}"
-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_secure/code/data_protection/rsa_test.rb
http://www.pragprog.com/titles/fr_secure

ENCRYPTING DATA 165

- cipher_text_with_priv = rsa.private_encrypt(txt)
10 cipher_text_with_pub = rsa.public_encrypt(txt)

-

- puts "== Plain Text Decrypted With Public Key =="
- puts pt_with_pub = rsa.public_decrypt(cipher_text_with_priv)
-

15 puts "== Plain Text Decrypted With Private Key =="
- puts pt_with_priv = rsa.private_decrypt(cipher_text_with_pub)

data_protection> ruby rsa_test.rb

Plain Text: Chunky Bacon

== Plain Text Decrypted With Public Key ==

Chunky Bacon

== Plain Text Decrypted With Private Key ==

Chunky Bacon

On line 5, we instantiate an RSA public key. Next, on lines 9 and 10,

we generate two ciphertexts using the private and public keys. Finally,

on lines 13 and 16, we decrypt each ciphertext using the opposite key.

Choosing the right cryptography

So far we’ve learned about symmetric block ciphers like AES and asym-

metric algorithms like RSA. Next, we need to determine when to use a

specific algorithm and the consequences of choosing one over the other.

We can choose from several well-respected algorithms for symmetric

block ciphers. The current number-one choice is the advanced encryp-

tion standard, or AES. AES was established using a contest where var-

ious groups submitted proposals, and the top submission was cho-

sen. This approach contrasts distinctly with a design-by-committee

approach, where any specific vision is normalized to the lowest com-

mon denominator. An algorithm known as Rijndael was selected as the

winner, and it now bears the name AES. AES is the current U.S. gov-

ernment standard for symmetric encryption, and it is ideal for cases

where third parties do not need to send or receive encrypted data.

If choosing the same algorithm the U.S. government uses makes you

uncomfortable, don’t fret; you have many other options. Serpent was

another AES finalist, as was the Twofish algorithm. These algorithms

currently represent a sound approach, but new attacks are being devel-

oped constantly, so what’s sound for now might not hold true for the

future. The DES algorithm is a good example of this; attacks targeting

the DES algorithm have rendered it undesirable, except in the case of

backwards compatibility.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

ENCRYPTING DATA 166

Joe Asks. . .

Why Is ECB Undesirable?

From the previous examples, you might have noticed some
extra information passed into the initialize() method of the
Cipher classes. These values instruct the cipher how to handle
messages that grow beyond a single block. Block sizes are typi-
cally in the eight-byte range, so this situation occurs frequently:

$ ruby ecb_versus_cbc.rb
aes with mode cbc
"\267X\254lI\216M\021\255\300`\"\251\220\272\243"
"\036\237\234\224p\324D{i\036\266\342MTiV"
"\203r\246\232\220\301=\205\267cN\314\376n?."
"\331\v\225\024j\301\310\037l(\222>\246\274\230T"
"s\213n\212\270\232\022\230v\327\035\215\237\eZ\005"

aes with mode ecb
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"d\026\325\252d\305D\304\031H C\310\310\215{"

In our example we can see that the plaintext is identical, but
the corresponding ciphertext is not. The output of each line
corresponds to one AES block. The first group of lines displays
a pseudo-random distribution of block contents; it used cipher
block chaining to achieve that effect. The second example
shows four equal consequence blocks within the cipher text;
it appears this way because the cipher wasn’t instructed to
extend its algorithm across blocks. This is bad because it allows
for known plaintext attacks or attacks where the part of the
message is known. An example of this would be attacking pro-
tocols that contain standard headers included in the plaintext.
By limiting the protection to a single block and knowing the
order of certain parts of the plaintext, we can narrow drastically
how much of the plaintext must be deciphered.

To sum up, don’t use ECB!

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

USING CRYPTOGRAPHY WITH ACTIVERECORD 167

If an application requires that you exchange messages with encrypted

information, then managing symmetric keys will become a nightmare

once any party involved is no longer trusted. This is where asymmet-

ric, or public-key cryptography, shines. Unfortunately, using public-

key cryptography is more difficult because it has significantly more

going on within it. Given this fact, we must concede proper encryp-

tion is beyond the scope of this book. That said, both RSA and DSA

serve as excellent starting points for encryption.

8.3 Using Cryptography with ActiveRecord

Now that we’re acquainted with the basics of using cryptography with

Ruby, it’s time to improve our data-protection implementation. One way

to improve it: we can use extension techniques common to the con-

struction of Rails.

ActiveRecord Encryptor

The book Agile Web Development with Rails [RTH08],includes an exam-

ple of leveraging ActiveRecord hooks to provide transparent encryption

and decryption of a model’s properties. That example focuses on teach-

ing developers how to use ActiveRecord callbacks, but it leaves out the

finer details of using cryptography. Our next task is to provide an imple-

mentation for that book’s example.

Add a security question

When authenticating users, it is important to provide additional fac-

tors. One example of this involves incorporating a security question to

further challenge the user. Let’s add a security question to LunchedIn

that helps us authenticate a user who has lost her password.

We can run the following command to create a Migration class that

builds the additional fields required for our security question:

$ ruby script/generate migration add_secret_user_question

Next add the following code to 011_add_secret_user_question.rb:

Download data_protection/lunchedin/db/migrate/011_add_secret_user_question.rb

class AddSecretUserQuestion < ActiveRecord::Migration

def self.up

add_column "users", "secret_question", :string

add_column "users", "secret_answer", :string

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/db/migrate/011_add_secret_user_question.rb
http://www.pragprog.com/titles/fr_secure

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Security on Rails’ Home Page

http://pragprog.com/titles/fr_secure

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fr_secure.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/fr_secure
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fr_secure
www.pragprog.com/catalog

