
Extracted from:

Security on Rails

This PDF file contains pages extracted from Security on Rails, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-48-4

ISBN-13: 978-1-934356-48-7

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-16

http://www.pragprog.com

THE TOOLS OF THE TRADE 26

Danger, Will Robinson!

The code in this chapter is not meant to be used for anything
other than learning how to attack software!

You can download the code for the LunchedIn application, as well as

the rest of the code from this book, by visiting the book’s home page

at http://pragprog.com/titles/fr_secure and following the link to the code.

Once you download and unpack the code archive, you’ll be able to find

the file corresponding to a particular code listing in the book by fol-

lowing the path shown in the gray lozenge at the top of the printed

extract. If you’re reading the PDF version of the book, try clicking the

gray lozenge.

To access the code for the vulnerable LunchedIn application, you can

navigate to this path in the book’s code archive: code/getting_started/

lunchedin_broken.

You can load the sample data used in exercises throughout this book

with this command:

lunchedin_broken> rake db:create:all

lunchedin_broken> rake db:migrate

lunchedin_broken> rake db:fixtures:load

If you feel the need to start over with clean data, simply execute the

commands again, and new data will appear.

2.2 The Tools of the Trade

So how do we break into a web application? Well, we probably have

to go beyond the standard web interface provided by the application’s

developers. In fact, we want to peel back the layers and see what’s

happening at the protocol level. This will let us see just what the appli-

cation is sending to the browser and what the browser is sending to

the server. We’ll also need to manipulate traffic, injecting information

that the application developer wasn’t expecting. If the developer wasn’t

expecting it, it’s possible she didn’t bother to deal with it, and that

gives us (the bad guy) an edge. The tool of choice for doing this is an

application proxy.

CLICK HERE to purchase this book now.

http://pragprog.com/titles/fr_secure
http://www.pragprog.com/titles/fr_secure

THE TOOLS OF THE TRADE 27

Figure 2.1: Installing Tamper Data

Application proxies are simply web servers that act as mediators be-

tween the browser and the destination server. They allow us to manip-

ulate the request before the browser sends it to the server. We can

also use them to manipulate the response before it is received by the

browser.

You can find a list of HTTP proxies useful for security testing and anal-

ysis in Chapter 11, Web Application Proxies, on page 263. The proxy we

will use for hacking is the Firefox extension, Tamper Data.

Using Firefox, navigate to Tamper Data’s home page.1 Click the install

link and agree to the installation dialog (see Figure 2.1).

We have our extension installed; now let’s use it to start hacking into

the LunchedIn application.

1. https://addons.mozilla.org/en-US/firefox/addon/966

CLICK HERE to purchase this book now.

https://addons.mozilla.org/en-US/firefox/addon/966
http://www.pragprog.com/titles/fr_secure

EXPLOIT: PARAMETER MANIPULATION 28

2.3 Exploit: Parameter Manipulation

Parameter manipulation is simply the act of modifying the informa-

tion sent back and forth between the client (the web browser) and the

server in a way the application never would. Anything sent by the client

is fair game to be modified. Any form field, HTTP header, cookie, or

query parameter can be changed and even removed from the outgoing

request.

Enabling Administrator Access

Like many applications, LunchedIn provides an administrative console

exposed to the Web. We will hack the administration console using an

ordinary account.

Navigate your browser to http://localhost:3000/users/new of LunchedIn,

and view the HTML source of the page. We should see something similar

to the following:

Download getting_started/create_user.html

<form action="/users" method="post">

<div style="margin:0;padding:0">

<input name="authenticity_token"

type="hidden" value="3b9f8f1e0915d96ba3d9e804bf46703d53261173"/>

</div>

<div class="highlighted-form">

<table class="form">

<tr>

<td class="label">First Name:</td>

<td>

<input id="user_first_name" name="user[first_name]"

size="16" type="text"/>

</td>

</tr>

<tr>

<td class="label">Last Name:</td>

<td>

<input id="user_last_name" name="user[last_name]"

size="16" type="text"/>

</td>

</tr>

...

</table>

</div>

<div style="padding: 10px;">

<input name="commit" type="submit" value="Create"/>

</div>

</form>

CLICK HERE to purchase this book now.

http://localhost:3000/users/new
http://media.pragprog.com/titles/fr_secure/code/getting_started/create_user.html
http://www.pragprog.com/titles/fr_secure

EXPLOIT: PARAMETER MANIPULATION 29

The Art of Pen-Testing

How do we know to do this? In short, we don’t. For the sake
of brevity, we will use the omniscient knowledge of the author
to skip the part where the attacker modifies the request and
painstakingly looks at the output. Security professionals refer to
this as penetration, or pen-testing.∗ Pen-testers are the profes-
sional hackers of the security world, and much of their work
involves painstaking trial-and-error processes, such as the one
described in Figure 2.2, on the following page.

∗. You can find more information about pen-testing at
http://www.securityfocus.com/pen-test.

A simple inspection of the HTML source using our browser reveals a

typical Rails HTML form. Assuming this application follows Rails con-

ventions, we can infer the following:

• The application invokes a POST request to http://localhost:3000/users

after the form is submitted. This URI maps to a ActionController::

Base subclass called UsersController and the create() method.2

• A User object is instantiated; then the save() or create() method is

invoked.

• The values inside of the left and right brackets map to object

attribute names and database columns, so we can infer that the

User class and corresponding table have the attributes first_name,

last_name, email, and probably several more.

Unless countermeasures are present to prevent the automatic binding

of fields within the form, all attributes passed to the new() method will

be set in the User object. This means if the developer skipped imple-

menting protection mechanisms, such as use of the attr_protected()

class method, we can insert our own form fields and the application

will gladly set values if a column exists.

If a setter method does not exist on the object being instantiated, we get

an undefined method error, and the request stops processing. This usu-

ally shows up as a nasty error in our web browser, but the Rails design-

ers thought of this and changed the verbosity of error messages running

2. This pattern is inferred from the Rails REST architecture.

CLICK HERE to purchase this book now.

http://www.securityfocus.com/pen-test
http://localhost:3000/users
http://www.pragprog.com/titles/fr_secure

EXPLOIT: PARAMETER MANIPULATION 30

View
Source

Modify
Parameter

Desired Result
Found
Exploit!

yes

no

Figure 2.2: Testing process for parameter manipulation

in different configuration modes. This protection helps prevent leaks of

internal information that might be used against our applications.

How can we enable administrator access by using parameter manipu-

lation? The attack is actually quite simple, but it requires us to under-

stand how the application determines a user is an administrator.

A common approach to designing user management is to create a User

model, a corresponding set of Role models, and relationships via a

belongs_to(), has_many(), or has_and_belongs_to_many() method. We will

discuss more about authentication and authorization in later chapters,

but let’s expand our assumptions along this line of thinking.

We have a pretty good idea that the application contains a User model

and a UsersController file, based on the information leaked from the URI

(http://localhost:3000/users/new). So let’s take a guess that LunchedIn’s

authorization model or method for determining access control is built

on a user belongs to a role relationship. If this guess holds true, then

the User model should contain the attribute role_id or something similar.

From a black hat perspective, setting this field involves a little guess-

work. First, a hacker must work out what we called the “this user is

an administrator” column, and then he must guess what value means

“yes.” We’ll skip that guessing step (but, as a hint, common column

names that control user access include role_id, role, is_admin, group, per-

mission_id, static_permission_id, admin, group_id, and grp_id).

The field is called role_id in the LunchedIn application. To add admin-

istrator access to a new User object, we need to add the following form

field to the request:

<input type="text" name="user[role_id]" value="1"/>

CLICK HERE to purchase this book now.

http://localhost:3000/users/new
http://www.pragprog.com/titles/fr_secure

EXPLOIT: PARAMETER MANIPULATION 31

Figure 2.3: Starting Tamper Data

We will use the Firefox extension installed earlier to add the role_id

parameter to the outgoing request. To start Tamper Data, select the

Tools menu and then the Tamper Data menu item. This will bring up

the Tamper Data dialog console, as shown in Figure 2.3.

Navigate to the http://localhost:3000/profile/new and enable Tamper Data.

Next, enter data for a new user account. Now clicking Create causes

Tamper Data to intercept the outgoing request and bring up a dialog

box, as shown in Figure 2.4, on the following page. Click the Tamper

button in the dialog box, as shown in Figure 2.6, on page 34.

At this point, we have successfully intercepted the outgoing create re-

quest to the LunchedIn application. We are able to modify this request

in any way we want. To add administrator functionality to the User

object, right-click or Control -click the column in the dialog box, then

select Add Element.

CLICK HERE to purchase this book now.

http://localhost:3000/profile/new
http://www.pragprog.com/titles/fr_secure

EXPLOIT: PARAMETER MANIPULATION 32

Figure 2.4: Creating a user

This brings up another dialog box that tells the user to enter post data;

the dialog should look something like Figure 2.5, on the following page.

Enter the following into the text field, and click OK .

user%5Brole_id%5D=1

We add this value as a new form element to accommodate the way Rails

maps form parameters to newly instantiated objects. Specifically, HTTP

parameters in the form of foo[bar] are mapped to hashes in the form

params[:foo][:bar]. The values %5B and %5D are the URL-encoded values

of [and]. The values are usually passed directly into the create() or

update_attributes() methods of Active Records.

Now click OK on the “Outgoing requests” dialog; if all goes well, the User

object will be added successfully to the application with administrator

rights.

When browsing through the application with our new administrative

privileges, the comments on a venue should look something like Fig-

ure 2.7, on page 35. We have changed the role of the user, so the

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

EXPLOIT: BROKEN AUTHORIZATION 33

Figure 2.5: Adding a form element with Tamper Data

application now gives us the ability to mark comments as spam, thus

allowing us to remove that nasty comment about our brother-in-law’s

restaurant—or eliminate all the good ones.

So far we’ve learned how to manipulate the request and response using

the Tamper Data proxy. This technique is very useful for testing possi-

ble security vulnerabilities, as well as for learning about what is going

on between the browser and the server.

2.4 Exploit: Broken Authorization

As application developers, we often limit access to various parts of our

applications. To gain access to these areas, a user must be authorized

or allowed. Sometimes the logic behind limiting access is flawed; we

refer to this as an authorization vulnerability. To illustrate authorization

vulnerabilities, we will exploit the voting mechanism in LunchedIn and

show how to access the events of other users.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Security on Rails’ Home Page

http://pragprog.com/titles/fr_secure

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fr_secure.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/fr_secure
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fr_secure
www.pragprog.com/catalog

