
Extracted from:

Security on Rails

This PDF file contains pages extracted from Security on Rails, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-48-4

ISBN-13: 978-1-934356-48-7

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2010-1-16

http://www.pragprog.com

Chapter 1

Security in Ruby on Rails
Security is a major concern in all software development, and the cre-

ators of Ruby on Rails have built many security features into the frame-

work. In order to build secure applications, we must use the built-in

security features correctly. Additionally, most problem domains have

their own set of security needs beyond the scope of any framework.

Large companies often utilize a software-development process that

overlays security on each phase of a project. For example, at McAfee, we

review code for security vulnerabilities before releasing it to the world.

Many development organizations require that architecture be reviewed

by someone security-savvy. This process works well for projects that

have long life cycles and massive budgets.

But let’s face it, heavyweight processes don’t fit for the majority of Ruby

on Rails developers. One of the strengths of Ruby on Rails is its agility—

security should be applied with the same spirit.

1.1 Who’s This Book For?

This book is for any Rails developer looking to:

• Improve general security knowledge

• Write more secure software

• Defend applications from common threats

• Encrypt data

• Control access to information

• Authenticate users from within applications

• Integrate with external user management systems

• And more...

WHAT DOES THIS BOOK COVER? 13

We do not cover many of the community plug-ins—not out of dislike,

but because building components from scratch is the best way to learn

about writing secure code. Please make copious use of the community

code available: the more eyes that have looked at a particular code

base, the more secure that code base is likely to be. You can apply the

principles covered in this book to help you choose which community

code base to use for your projects.

1.2 What Does This Book Cover?

When we decided to write a book about Ruby on Rails security, we

began by outlining an exhaustive list of security topics. We realized

quickly that there simply wasn’t enough time to give every topic the

appropriate amount of focus, so we had to pick and choose to narrow

things down.

Here’s what the chapters cover:

• Chapter 2, Hacking the Example, on page 25, takes you through

the process of hacking an application. We walk you through each

exploit and, by the end of the chapter, you’ll learn many common

techniques used by hackers.

• Chapter 3, Fixing the Example, on page 51, takes you through

fixing the application. You will learn how to fix the vulnerabilities

discovered in the previous chapter.

• Chapter 4, Testing for Security, on page 70, takes you through

testing the application. You will learn how to test the application

from the standpoint of security.

• Chapter 5, Validation, on page 86, covers techniques for accepting,

rejecting, or sanitizing system input and output. Rails provides

excellent facilities for validation, and this chapter provides some

background and general techniques for ensuring that we leverage

Rails’ facilities to the fullest extent possible.

• In Chapter 6, Authentication: Decentralized Authentication, begin-

ning on page 97, we cover authentication techniques that are

tightly coupled with your application. This chapter is ideal for any-

one who wants to control user accounts directly in the application

database or in an application-controlled directory server.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

ENTERING A SECURITY MIND-SET 14

• Chapter 7, Authorization, on page 137, covers the process of con-

trolling access to application resources. In this chapter, we will

modify the way our controllers determine if a user is allowed to

invoke a particular action based on the user’s role.

• Chapter 8, Data Protection Using Cryptography, on page 157, cov-

ers the basics of how to use cryptography in applications. This is

an important issue if you need to store sensitive information like

Social Security numbers or credit card data.

• Chapter 9, Digital Signatures and Email, on page 174, builds on

the cryptography concepts covered in the preceding chapter. You

will learn to implement code that creates digitally signed emails.

• Chapter 10, SSO: Centralized Authentication, on page 193, cov-

ers authenticating users against multiple external systems. We

demonstrate CAS, OpenID, and Kerberos (Active Directory).

Feel free to skip ahead to any chapter. We will spend the rest of this

chapter focusing on security concepts and principles.

1.3 Entering a Security Mind-Set

How did things like door locks, car alarms, PINs, and passwords come

to be designed in the first place? How many are a result of human

nature versus the nature of technology?

At my son’s elementary school, there is a sign that says, “You can

do anything you want—as long as it doesn’t bother anyone else.” This

sign is intended to help the kids develop into good, law-abiding adults.

Unfortunately, many people don’t live by this sign’s rule. On the Web,

theft, harassment, and other malicious activities occur every day. Tak-

ing these risks into account is a necessary first step toward entering a

security mind-set when developing code.

Our applications are like little islands in an ocean of merchants, pi-

rates, and passers-by. We have to protect our population from the dan-

gers that lurk around it. And while there are endless analogies compar-

ing software security and real-world security, in this book we’ll asso-

ciate these concepts with established security principles.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

DEFENSE IN DEPTH 15

1.4 Defense in Depth

The concept of Defense in Depth originates with military teachings on

fortress construction. Multiple layers of defense can stop or slow down

attackers, and each layer typically deals with a different type of attack.

Our homes have doors with locks. To enhance the security of our homes

further, we can add alarm systems to our homes. In many communities,

gates and security guards at the entrance further limit unauthorized

access.

The way that we deploy web applications implements a form of Defense

in Depth:

1. Network: firewalls, network intrusion detection systems

Detecting attacks at a network level enables us to add an addi-

tional defense against an attack that might not be detected at any

of the other layers.

2. Operating system: host-level intrusion detection, stack protection

By detecting malware, stack overflows, and other OS-level behav-

iors, we decrease the likelihood that an attacker can gain access

to our systems.

3. Web server: HTTP protocol enforcement

If our web server enforces strict adherence to HTTP specifications,

then our application is less likely to break unexpectedly because

of a protocol error.

4. Web application: application-specific, user login

Our application can control access prior to any database or web

service connectivity.

5. Database: host-specific access control, DB user access control

The database can ensure that only authorized systems can con-

nect through host names.

Defense in Depth applies to the architecture of our web applications as

well.

Let’s explore a real-world example of Defense in Depth. A banking cus-

tomer is browsing her bank account balances and activities. In the

banking application’s menu, there is an option for external account

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

ONLY SECURE AS THE WEAKEST LINK 16

 Sir -

I assure you that

no one is getting through

that gate.

Figure 1.1: Look familiar?

transfers. This allows the customer to transfer money from her account

to an external account based on an account and routing number.

What if our user gets up from her computer and forgets to logoff? Could

someone else walk up and make a nice little deposit into an account of

his choice? How would the banking customer repudiate the transfer?

What if we also require the user to answer some secret questions before

transferring the funds? Or maybe we can mail a separate PIN in the mail

for transfers.

1.5 Only Secure as the Weakest Link

The weakest link of an application within the context of its security

also happens to be the highest level of security we can hope to achieve

for that same application. What this means is that we can assume an

attacker is going to go after the easiest target. Figure 1.1 is a tongue-in-

cheek illustration of the way many security systems work. We can see

that the gate is strong and sturdy, but the fence is not.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

FAIL CLOSE 17

Often, developers will go to great lengths to enforce password complex-

ity, but the application may still have a SQL Injection vulnerability. We

explore this in Chapter 2, Hacking the Example, on page 25. A hacker

can bypass the password altogether.

Remember we’re not in control of every component in our applications.

There are databases, third-party libraries, legacy applications, and

other participants in our application stack. Knowing the weaknesses

of each component is crucial. Perhaps there’s a known exploit against

a particular database or parsing library. We must proceed with caution

when incorporating external systems and create well-defined bound-

aries that allow applications to isolate dangerous transitions.

1.6 Fail Close

Fail close is the opposite of fail open. For example, if a building catches

on fire, all electronically locked doors will open to allow the fire depart-

ment in and the people who were inside to get out. This is probably

the desired functionality of a security system for a building with people

inside it. However, in most software applications, we want our systems

to fail in such a way that they are secure post-failure.

Consider the following code:

def show_invoice

@invoice = Invoice.find(params['id'])

unless @user.validate_secret_code(@invoice.secret_code)

redirect_to :action => 'not_authorized'

end

end

This code checks to see if the invoice record contains the secret code

that exists in the user object. If it doesn’t exist, the code redirects the

user to another page. Otherwise, the code returns the invoice. While

this code might or might not work, it shows a flaw (not a bug) in the

design. The code should redirect to the authorized page on a positive

condition and continue with a fail condition otherwise:

def show_invoice

@invoice = Invoice.find(params['id'])

if @user.validate_secret_code(@invoice.secret_code)

redirect_to :action => 'authorized'

else

this is where we tell the user that they are

not authorized to view the invoice.

redirect_to :action => 'not_authorized'

end

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

WHITELISTING 18

If the condition in the first code example fails for some reason, the appli-

cation will continue as if the user is authorized. In the second example,

the opposite is true. The application will continue on the unauthorized

path.

1.7 Whitelisting

Consider the following word list:

bad_words = %w{< > ' " script}

This is a very limited list of words and characters that we want to

restrict our users from inputting. The problem is that we are guessing

what characters or words are potentially malicious. What happens if

our user Base64-encodes the input or HTML-encodes the input? There

are many exploits possible in these cases. Let’s look at another exam-

ple:

restricted_users %w{alice bob kevin}

We’ve created a list of users who have abused their privileges. While

this list might be useful from a reporting standpoint, we shouldn’t use

this list for a security control.

Fundamentally, any list that tries to assert what is not allowed is known

as a blacklist. Blacklists should be avoided whenever possible in design-

ing security controls because they tend to be flexible in nature. Flexi-

bility and security don’t mix well.

At this point, it is probably a good idea to break up lists in the context

of security controls into two categories:

• Access control

• Filters

Access Control Lists

Consider the following list:

admins = %w{dave ben}

The admins list includes Dave and Ben. We now have a situation where

our control can implement the following logic:

if admins.include? user

redirect_to :action => "admin_console"

else

redirect_to :action => "user_console"

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

LEAST PRIVILEGE 19

This is a whitelist, a list of acceptable items. Whitelists work quite well

with our principle of failing closed. Anytime we are making a security

decision based on some criteria, that criteria should come in the form

of a whitelist. Additionally, we must write our code to fail close. Here is

an example of what not to do:

Don't do this.

if !admins.include? user

redirect_to :action => "user_console"

else

redirect_to :action => "admin_console"

end

In the previous example, we’ve succeeded in creating a whitelist, but

we’ve managed to violate our principle of failing closed.

Input Filters

Consider the following filter:

First and Last Name Tokens

acceptable_name = /[a-zA-Z]+(([']{1}[a-zA-Z]+)|([\-]{1}[a-zA-Z]+))*/

We’ve constructed a whitelist of acceptable characters for a person’s

name. It whitelists any normal name like David or O’Reilly, or even

O’Reilly-Smith. It is very difficult to write a blacklist that effectively

detects an invalid name. Here’s our attempt at a list:

unacceptable_name = /''|--|[\-]{2}-+|[\d];/

This is hardly a complete blacklist. And that is really the point of this

example. It is nontrivial to create a complete blacklist, and really unnec-

essary for most situations. You can probably already see a number of

characters that we should include in this blacklist. But it’s not an effec-

tive technique if you want to cover your bases completely.

1.8 Least Privilege

Least privilege is the notion that users or subsystems should only be

able to execute code that they need in order to function per business

requirements, and nothing else. We can think of least privilege as a

whitelist of necessary functionality.

Here’s a dialogue that illustrates a typical scenario in the corporate

world:

Business Analyst: Why can’t I add a new user to the document man-

agement system?

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

LEAST PRIVILEGE 20

Administrator: Because you are not authorized to make those kind of

changes.

Business Analyst: Why not?

Administrator: Because you are not a member of the administrator

group.

Business Analyst: OK. Make me a member of the administrator group.

Administrator: No.

Business Analyst: Why not?

Administrator: Because business analysts are not allowed to be ad-

ministrators. You would grant permissions to the wrong people. Feel free

to write a business justification document explaining why you need to

add users to the system. Perhaps we could add a group called “business

analyst admins.” This group would be allowed to add only other busi-

ness analysts. You have only read access to the system, for the purpose

of reading documents for business analysts; this is consistent with our

policy of enforcing least privilege.

Business Analyst: Gee. Thanks.

As we engineer more complex types of software, we must understand

our usage scenarios to implement security controls across security

boundaries. Security boundaries are areas of our software that exe-

cute some code that might require different levels of access. We cover

specifics of this in Chapter 7.

Regardless of the mechanism that supports our transition across a se-

curity boundary, we should implement our security controls to enforce

or allow the expression of least privilege.

An example of the misuse of this principle is when developers deploy

database-connected applications. Often, if an attacker is able to break

the application-layer defenses, that attacker will then have adminis-

trator access to a database system. This is not a good idea. The soft-

ware should be accessing the database with the least amount of priv-

ilege to perform the mandated functionality. This can also be looked

at within the context of Defense in Depth. At every level, part of the

defense should be least privilege.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

DO NOT REPEAT YOURSELF 21

1.9 Do Not Repeat Yourself

DRY, or Do Not Repeat Yourself, is a principle first coined by The Prag-

matic Programmer [HT00]. If we focus on not cutting and pasting, our

code will be more secure—we won’t repeat security mechanisms in dif-

ferent ways if we share common code across our security controls. This

allows us to also correct vulnerabilities as they are discovered, all in

one place as opposed to many.

1.10 Avoid Complexity

Complexity is bad. Complexity is an enemy to development cost,

maintainability, and security. As software complexity increases, so does

the risk of vulnerability. Throughout the brief history of modern, dis-

tributed application development, developers, business drivers, and ex-

cessive feature lists in general have caused application code bases to

become unmanageable. There is no question that complexity has cre-

ated numerous security flaws. It begins during the design phase, when

long lists of desired features pile up like dirty laundry.

It is almost impossible to describe a secure system by specification. We

can have software requirements descriptions (SRDs) that enumerate

“secure requirements.” They might look something like this:

• All cryptographic keys must be stored in separate files outside of

the application directory.

• Key strength for symmetric cryptographic routines must be a min-

imum of 256 bits.

• Key strength for asymmetric cryptographic routines must be a

minimum of 2,048 bits.

• A system should filter SQL keywords and SQL escape sequences.

• A system should filter all JavaScript.

This is a very basic list. In reality, a security consulting firm will provide

you with a book of security requirements to code against for the sum of

several thousand dollars. And while these can be useful, they also tend

to be fairly context-insensitive.

Ultimately, security requirements are much like usability requirements.

X UI component should be usable. And likewise, X component should

be secure. It’s a bit vague, isn’t it?

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

AVOID COMPLEXITY 22

If we apply some of the previously described principles to our devel-

opment, we can reduce the amount of complexity involved in making

more secure applications. Here’s a summary of the principles that drive

the techniques we will explore in this book:

• Defense in Depth pushes us to look at a layered-application model.

Layers break up our security boundaries naturally in our software.

This leads to simpler software that delegates duties to each appro-

priate layer. You need to focus on creating silos of defense, which

makes your components both more reusable and more secure!

• Whitelisting makes life easier. If we were to try to figure out all the

things users shouldn’t be doing before we ship our code, well, we’d

never ship any code. However, if we focus on what our users can

do, we have a finite list to concentrate on, which requires much

less of our time. Additionally, we can be explicit about what our

users can do, which fits nicely into the next principle.

• Least privilege pushes our security logic further down the applica-

tion stack. This inspires us to write security-aware components

that play nicely in our system’s ecosystem. Instead of creating

infinitely configurable security controls, our components can push

for convention-driven security rather than configuration-driven

security. Business analysts prefer to have infinitely configurable

security subsystems. Don’t listen to them. Have you ever encoun-

tered an administration console allowing you to configure every

conceivable permission in the world? That is complexity at its

worst.

• Secure by default allows more convention-driven security in our

application. Building software in such a way that it is secure

out-of-the-box drastically reduces the dependency on users and

administrators to harden the security of a particular application.

• Writing code that fails close, incidentally, is easier for most devel-

opers to read. Easier-to-read code is easier to maintain, and main-

tenance is an important aspect of application complexity.

• DRYing your code up is one of Rails’ guiding principles. It keeps

your code base much more manageable, which in turn leads to

easier maintenance. We all make mistakes, but we can make sure

those mistakes are easy to fix.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fr_secure

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Security on Rails’ Home Page

http://pragprog.com/titles/fr_secure

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fr_secure.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/fr_secure
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fr_secure
www.pragprog.com/catalog

