
Extracted from:

FXRuby
Create Lean and Mean GUIs with Ruby

This PDF file contains pages extracted from FXRuby, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As part of our

Beta book program, we’re releasing this copy well before we normally

would. That way you’ll be able to get this content a couple of months

before it’s available in finished form, and we’ll get feedback to make

the book even better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos and

other weirdness. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines with little black rectan-

gles, incorrect hyphenations, and all the other ugly things that you

wouldn’t expect to see in a finished book. We can’t be held liable if you

use this book to try to create a spiffy application and you somehow

end up with a strangely shaped farm implement instead. Despite all

this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs

from your account on http://pragprog.com. When the book is finally

ready, you’ll get the final version (and subsequent updates) from the

same address. In the meantime, we’d appreciate you sending us your

feedback on this book at http://books.pragprog.com/titles/fxruby/errata, or

by using the links at the bottom of each page.

Thank you for being part of the Pragmatic community!

Andy Hunt

http://pragprog.com
http://books.pragprog.com/titles/fxruby/errata

Chapter 8

Sorting Data with List and Table
Widgets

The simple widgets that we learned about in the previous chapter pri-

marily deal with a single value (if they have any real “value” associated

with them at all). FXRuby also provides a number of more complicated

widgets for dealing with collections of values. Figure 8.1, on the next

page lists the widgets that we’ll be looking at in this chapter, along with

brief descriptions of when you’d want to consider using them in your

applications. We’ll begin by looking at the FXList.

8.1 Displaying Simple Lists with FXList

The FXList widget displays a list of items, where each item has an asso-

ciated text string and an optional icon. If the list contains more items

than it can display, it will grow a vertical scrollbar to allow you to scroll

up or down in the list.

By default, an FXList is empty. You can add items to the end of a list

using the appendItem() method.

Download listexample.rb

groceries = FXList.new(self,

:opts => LIST_NORMAL|LIST_EXTENDEDSELECT|LAYOUT_FILL)

groceries.appendItem("Milk")

groceries.appendItem("Eggs")

groceries.appendItem("Bacon (Chunky)")

You can of course also prepend an item to the beginning of the list,

insert an item at a specific position in the list, or remove an item from

http://media.pragprog.com/titles/fxruby/code/listexample.rb

DISPLAYING SIMPLE LISTS WITH FXLIST 111

Widget Class What’s it for?

FXList Use FXList to display an always-visible, flat list of items

and allow the user to select one or more items from it.

FXListBox Use FXListBox to display a drop-down, flat list of items

and allow the user to select a single item from it.

FXComboBox Use FXComboBox to display a drop-down, flat list of

items and allow the user to select a single item from it.

Unlike FXListBox, the FXComboBox is editable.

FXTreeList Use FXTreeList to display a list of hierarchically struc-

tured items and allow the user to select one or more

items from it.

FXTable Use FXTable to display a collection of items in tabular

form and allow the user to select one or more items

from it.

Figure 8.1: List Widgets

the list (using the prependItem(), insertItem() or removeItem() method,

respectively).

Download listexample.rb

groceries.prependItem("Bread")

groceries.insertItem(2, "Peanut Butter")

groceries.removeItem(3)

Making Selections in Lists

FXRuby maintains several attributes having to do with the current

selection in a list. The current item is simply the last list item that you

clicked on, and it’s the item that currently has the keyboard focus. If

there is no current item, the currentItem for a list is -1; otherwise, it’s

the integer index of the current item. When the current item changes,

the FXList sends both a SEL_CHANGED and SEL_COMMAND message to the

list widget’s target.

groceries.connect(SEL_COMMAND) do |sender, sel, index|

puts "The new current item is #{sender.currentItem}"

end

The list sends a number of other interesting messages to its target

when, for example, the user double-clicks on a list item. For a com-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/listexample.rb
http://www.pragprog.com/titles/fxruby

DISPLAYING SIMPLE LISTS WITH FXLIST 112

Figure 8.2: FXList in Action

plete listing of all the messages that FXList sends to its target, check the

API documentation.

The selection mode for an FXList sets the policy for how many items can

be selected at the same time, and how you go about changing the selec-

tion. One selection mode that you’ll use often is the LIST_BROWSESELECT

mode. In this mode, there’s always exactly one list item selected, and

it’s the last one you clicked on. The other commonly used list selection

mode is LIST_EXTENDEDSELECT mode. In this mode, any number of items

can be selected. Control-clicking an item toggles its selected state, and

holding down the Shift key while clicking on items will extend the

current selection to include all of the intermediate items. TheFXListalso provides

the less-frequently

usedLIST_SINGLESELECT,LIST_AUTOSELECTandLIST_MULTIPLESELECTse

modes.So Which Items Are Selected?

When the list is configured in either the LIST_SINGLESELECT, LIST_BROWSESELECT

or LIST_AUTOSELECT mode, you can safely assume that the currentItem

is the currently selected item. When the list is configured in either

LIST_EXTENDEDSELECT or LIST_MULTIPLESELECT mode, however, you must check

each list item individually to find out whether it’s selected. One way to

do this is to iterate over all of the item indices.

selected_indices = []

0.upto(list.numItems-1) do |index|

selected_indices << index if list.itemSelected?(index)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fxruby

GOOD THINGS COME IN SMALL PACKAGES: FXCOMBOBOX AND FXLISTBOX 113

end

A different approach is to iterate over the FXListItem instances them-

selves, testing their selected?() states.

Download listexample.rb

selected_items = []

groceries.each { |item| selected_items << item if item.selected? }

As you might expect, the FXList and FXListItem classes provide a number

of additional methods having to do with the behavior and appearance

of a list. For all the gory details, see the API documentation for these

classes.

Depending on the number of items in the list, and the available “real

estate” in your user interface, an FXList might not be the best choice for

displaying a collection of data. If you need to display a long list of items,

but only have a small amount of space to work with, a combo box or

list box might work better. We’ll take a look at those widgets next.

8.2 Good Things Come in Small Packages: FXComboBox and

FXListBox

The FXComboBox and FXListBox widgets are both variations on the FXList

widget. Both of these widgets look like a combination of an FXTextField

and an FXArrowButton. When you click the arrow button, the text field

expands to display the entire list of items. After you select an item from

the list, the list “pops” back down to assume its original appearance.

Like FXList, they can both be used to display a flat list of items from

which the user can select an item. Unlike FXList, they only allow you to

select one item at a time from the list.

There are no hard and fast rules about when it’s preferable to use a

regular FXList as opposed to an FXComboBox or FXListBox. Obviously, if you

need for the user to be able to pick more than one item, you’d want to

go with the FXList. On the other hand, if a single selection is appropriate

and if you don’t have enough room in the user interface to display a

list, a combo box or list box is a nice, compact way to hide the list’s

contents away when they aren’t needed.

My personal philosophy is that if a list is going to contain more than

a handful of items, I’ll use a combo box or list box instead of a plain

old list. The differences between combo boxes and list boxes are sub-

tle, however, and depending on how you use them they’re pretty inter-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/listexample.rb
http://www.pragprog.com/titles/fxruby

GOOD THINGS COME IN SMALL PACKAGES: FXCOMBOBOX AND FXLISTBOX 114

Figure 8.3: Separated at Birth? FXComboBox and FXListBox

changeable. I mean, can you tell the difference between the two in Fig-

ure 8.3? Neither can I. Basically, if all you need is to be able to select an

item from a list, you should use the FXListBox. If you’d like to be able to

type in a text string as an alternative to the existing list items, and even

see that item added to the list of items, you should use FXComboBox.

Like FXList, both of these widgets provide prependItem(), appendItem(),

insertItem() and removeItem() methods for altering the contents of the

list.

Download comboboxexample.rb

states = FXListBox.new(matrix,

:opts => LISTBOX_NORMAL|FRAME_SUNKEN|FRAME_THICK|LAYOUT_FILL_X)

$state_names.each { |name| states.appendItem(name) }

One item can be selected at any time, and the currentItem attribute indi-

cates the index of that item (or -1 if there is no current item).

Since the FXComboBox can be edited, there are a few additional issues

that we need to address for that widget. One issue has to do with

whether text that the user types into the combo box’s text field should

be added to the list of items or not. By default, the combo box uses the

COMBOBOX_NO_REPLACE option, which means that the list’s contents

remain the same regardless of what the user types into the text field.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://www.pragprog.com/titles/fxruby

GOOD THINGS COME IN SMALL PACKAGES: FXCOMBOBOX AND FXLISTBOX 115

Download comboboxexample.rb

accounts = FXComboBox.new(matrix, 20,

:opts => COMBOBOX_NO_REPLACE|FRAME_SUNKEN|FRAME_THICK|LAYOUT_FILL_X)

When you’re using an editable FXComboBox, you can’t necessary depend

on the currentItem to lead you to the user’s input, since they may have

typed some new text into the text field. For that reason, you should

instead inspect the value of the text attribute to determine the combo

box’s current value.

Download comboboxexample.rb

accounts.connect(SEL_COMMAND) do |sender, sel, index|

assign_expense_account(sender.text)

end

If you’d like for the strings that the user types into the text field to be

added to the combo box’s list, you have several choices as to where

those new items are placed in the list.

• Use the COMBOBOX_INSERT_FIRST option to insert the new item at

the beginning of the list.

• Use the COMBOBOX_INSERT_LAST option to insert the new item at the

end of the list.

• Use the COMBOBOX_INSERT_BEFORE option to insert the new item

before the current item.

• Use the COMBOBOX_INSERT_AFTER option to insert the new item after

the current item.

In my experience, the COMBOBOX_INSERT_BEFORE and COMBOBOX_INSERT_AFTER

options are a bit confusing, from a user’s perspective, and I usually just

stick with the COMBOBOX_INSERT_FIRST option. Note that the FXComboBox

doesn’t have a built-in option to automatically maintain the sort order

of the items, but you can work around this by calling sortItems() on the

combo box during the SEL_COMMAND handler.

Download comboboxexample.rb

categories.connect(SEL_COMMAND) do |sender, sel, index|

assign_expense_category(sender.text)

sender.sortItems

end

The call to sortItems() won’t disturb the text entered in the text field, but

if you click the arrow button to pop the list pane down, you will see that

the newly added item appears at the correct position in the sorted list.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://media.pragprog.com/titles/fxruby/code/comboboxexample.rb
http://www.pragprog.com/titles/fxruby

BRANCHING OUT WITH TREE LISTS 116

The widgets that we’ve looked at so far in this chapter all deal with flat

lists of items. FXRuby also provides support for dealing with hierarchi-

cally structured data by way of the FXTreeList widget, and we’ll discuss it

next.

8.3 Branching Out with Tree Lists

The FXTreeList widget is so named because you can imagine the data that

it manages as tree-like, starting from a root and reaching out in var-

ious directions, with branches leading to other branches. Unlike the

FXList, FXComboBox and FXListBox, which all deal with flat lists of things,

the FXTreeList is designed for use with hierarchically structured data.

Although we use the word “tree” to describe this list’s data and appear-

ance, you should note that it’s not exactly like the classic tree data

structure that you may have studied in your computer science classes.

One especially confusing point is that the standard documentation for

the FXTreeList class uses the term “root” item to refer to any one of the

top-most visible items in the tree. From a strict computer-science point

of view, the actual root of the tree never appears on screen, and we can

only refer to it indirectly using the FXTreeList API.

Once you get used to the terminology that FXRuby uses to talk about

the FXTreeList, however, you’ll find that it’s easy to use in practice. You

can modify the content of the tree list using the familiar prependItem(),

insertItem(), appendItem() and removeItem() methods, although the call-

ing conventions are slightly different due to the hierarchical nature

of the list. The first argument for the prependItem() and appendItem()

methods is a reference to the parent item for the item that you’re

adding. If it’s a top-level item, pass in nil as the first argument.

Download treelistexample.rb

treelist = FXTreeList.new(treelist_frame,

:opts => TREELIST_NORMAL|TREELIST_SHOWS_LINES| \

TREELIST_SHOWS_BOXES|TREELIST_ROOT_BOXES|LAYOUT_FILL)

artist_1 = treelist.appendItem(nil, "Alison Kraus")

album_1_2 = treelist.appendItem(artist_1, "Forget About It")

track_1_2_3 = treelist.appendItem(album_1_2, "Ghost in this House")

track_1_2_2 = treelist.prependItem(album_1_2, "Maybe")

track_1_2_1 = treelist.insertItem(track_1_2_2, album_1_2, "Stay")

album_1_1 = treelist.prependItem(artist_1, "Every Time You Say Goodbye")

There are three options that you can use to control how the connections

between parent and child items in the tree list are displayed. If the TREEL-

IST_SHOWS_LINES option is selected, the tree list will draw a faint dotted

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://www.pragprog.com/titles/fxruby

BRANCHING OUT WITH TREE LISTS 117

Figure 8.4: A Sample FXTreeList

line from a parent item to each of its child items. If TREELIST_SHOWS_BOXES

is selected, the tree list will display a small box to the left of any tree

item that has one or more child items; if that tree item is expanded, the

box will contain a dash, and if the tree item is collapsed, it will con-

tain a plus sign. Now, for some reason, the TREELIST_SHOWS_BOXES option

only applies to items nested somewhere below the top-level items. If

you also want to see the boxes next to top-level items (and remember-

ing that FOX calls these the “root-level” items), you must also pass in

the TREELIST_ROOT_BOXES option. Note that the TREELIST_ROOT_BOXES option

has no effect unless TREELIST_SHOWS_BOXES is also enabled.

Having said all that, I usually pass in all three options, as shown in

the sample code. I’ve never found a good reason to omit any of them.

Figure 8.4 will give you an idea of what the tree list looks like in this

case.

Keeping Track of the Selection

FXTreeList supports the same kinds of selection modes that FXList does,

and they work in the same ways, so the things that you’ve already

learned about them apply here as well. The currentItem attribute still

tells you the last item that was clicked, although in this case it’s a

reference to an FXTreeItem object instead of an integer index.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fxruby

BRANCHING OUT WITH TREE LISTS 118

Determining which items are selected in a tree list can be tricky, how-

ever, when the selection mode allows for multiple selected items. The

most straightforward way to do this, in my experience, is to track the

selected items in an Array (or some other container) and then use the

SEL_SELECTED and SEL_DESELECTED messages from the FXTreeList to update

the array.

Download treelistexample.rb

selected_items = []

treelist.connect(SEL_SELECTED) do |sender, sel, item|

selected_items << item unless selected_items.include? item

end

treelist.connect(SEL_DESELECTED) do |sender, sel, item|

selected_items.delete(item)

end

This technique works well for any size tree list because it’s inexpensive,

computationally speaking. If you know that the tree list isn’t going to

hold all that many items, however, you may find that simply travers-

ing the tree every time the current item changes, and recording which

items are selected, is fast enough for your purposes. Just catch the

SEL_COMMAND message from the FXTreeList.

Download treelistexample.rb

treelist.connect(SEL_COMMAND) do |sender, sel, current|

selected_items = []

treelist.each { |child| add_selected_items(child, selected_items) }

end

Here’s the add_selected_items(), which traverses the tree in a recursive

fashion to see which items are selected.

Download treelistexample.rb

def add_selected_items(item, selected_items)

selected_items << item if item.selected?

item.each { |child| add_selected_items(child, selected_items) }

end

Now before we end this chapter, a super-secret bonus trick about asso-

ciating a right-click popup menu with an FXTreeList.

Creating Context Menus for Tree Items

Users have gotten used to the idea of being able to right-click on an

object in the user interface to display a context-sensitive popup menu

for that object. You can do this with almost any kind of object in FXRuby,

but it sure seems to come up a lot when developers decide to add an

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://www.pragprog.com/titles/fxruby

BRANCHING OUT WITH TREE LISTS 119

FXTreeList to their application. For that reason, I’m going to treat you

to a little recipe for how to add one of these right-click popup menus

to a tree list, bearing in mind that a very similar technique could be

applied to other widgets. I’m going to skim over the details about the

different parts of the menu itself, but we’ll cover that in depth later, in

Chapter 12, Working with Menus and Toolbars, on page 154.

The first step is to catch the SEL_RIGHTBUTTONRELEASE message that the

FXTreeList forwards to its target. You could instead trigger the popup on

SEL_RIGHTBUTTONPRESS, but I think it feels more natural to do it when the

button is released. Use the window coordinates reported in the event

data to determine which tree item (if any) was hit.

Download treelistexample.rb

treelist.connect(SEL_RIGHTBUTTONRELEASE) do |sender, sel, event|

item = sender.getItemAt(event.win_x, event.win_y)

unless item.nil?

...

end

end

The getItemAt() method will return nil if there is no tree item at the spec-

ified coordinates. Otherwise, it will return a reference to that FXTreeItem.

The next step is to construct an FXMenuPane and add one or more menu

commands to it.

Download treelistexample.rb

treelist.connect(SEL_RIGHTBUTTONRELEASE) do |sender, sel, event|

item = sender.getItemAt(event.win_x, event.win_y)

unless item.nil?

FXMenuPane.new(self) do |menu_pane|

play = FXMenuCommand.new(menu_pane, "Play Song")

play.connect(SEL_COMMAND) { play_song_for(item) }

info = FXMenuCommand.new(menu_pane, "Get Info")

info.connect(SEL_COMMAND) { display_info_for(item) }

...

end

end

end

Finally, create the menu pane, call popup() on it to display it onscreen,

and then start a nested run loop focused on that menu pane.

Download treelistexample.rb

treelist.connect(SEL_RIGHTBUTTONRELEASE) do |sender, sel, event|

item = sender.getItemAt(event.win_x, event.win_y)

unless item.nil?

FXMenuPane.new(self) do |menu_pane|

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://media.pragprog.com/titles/fxruby/code/treelistexample.rb
http://www.pragprog.com/titles/fxruby

BRANCHING OUT WITH TREE LISTS 120

Figure 8.5: Adding a Context Menu for the Tree List

play = FXMenuCommand.new(menu_pane, "Play Song")

play.connect(SEL_COMMAND) { play_song_for(item) }

info = FXMenuCommand.new(menu_pane, "Get Info")

info.connect(SEL_COMMAND) { display_info_for(item) }

menu_pane.create

menu_pane.popup(nil, event.root_x, event.root_y)

app.runModalWhileShown(menu_pane)

end

end

end

As soon as the user clicks on one of the menu commands, or clicks

outside the popup menu, the menu pane will be hidden and the appli-

cation will fall back out of the event loop started by the call to runModal-

WhileShown(). Figure 8.5 shows what the popup menu looks like when

I right-click on one of the songs in the list. This is an easy bit of code

to add to an application, and when used properly it can really enhance

the program’s usability.

So now we have options for dealing with both flat lists of data as well as

nested lists of data. Next up, we’re going to take a look at one more of

the widgets that FXRuby provides for dealing with collections of data,

and that’s the FXTable widget.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fxruby

TABLE WIDGET 121

8.4 Table Widget

The FXTable widget is one of the more complicated widgets in the FOX

toolkit, and it’s one that has evolved pretty significantly since it was

originally introduced. Newcomers sometimes confuse the FXTable widget

with the FXMatrix layout manager, which you can use to lay out a bunch

of widgets in rows and columns.1 The FXTabledoes lay out its contents

in rows and columns, but it’s not a layout manager per se; in some

other toolkits, you may have heard this kind of a widget referred to as

a “grid” widget or “spreadsheet” widget.

Storing Data in a Table

Our study of FXTable begins with a look at how to create a table and add

some data to it. In this section we’re going to learn a little bit about how

the table actually manages its data internally. We’ll see that the table’s

sparse storage scheme makes it very efficient, and we’ll also learn how

to define items that can span multiple table cells.

Like the list widgets we looked at in the last chapter, tables are empty by

default. The most efficient way to fill up a table is to use the setTableSize()

method.

Download tableexample1.rb

table = FXTable.new(self, :opts => LAYOUT_FILL)

table.setTableSize(10, 10)

An important thing to recognize about setTableSize(), and all of the meth-

ods that alter the table’s size, is that FXTable makes a distinction between

empty cells and those that have some content (or data) associated

with them. Both kinds of cells take up space onscreen when the table

is drawn, but internally, FXTable only allocates storage (in the form

of FXTableItem objects) for those cells that actually have content. This

makes the table very efficient in terms of memory use, and it means

that you can store pretty large tables with very little penalty.

You should also understand that the setTableSize() method is a destruc-

tive method. Whether you’re initializing the table size, or simply resizing

it to make it bigger or smaller, setTableSize() begins by destroying all of

the existing table items. So if your table already contains some data,

1. We used the FXMatrix layout manager while building the Picture Book application, and

we’ll discuss it in more detail in the (as yet) unwritten sec.layout.matrix.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/tableexample1.rb
http://www.pragprog.com/titles/fxruby

TABLE WIDGET 122

Figure 8.6: Table with a Spanning Item

and you just want to grow it by a few rows or columns, calling setTa-

bleSize() is not the way to do it. Instead, use some combination of the

appendRows(), appendColumns(), insertRows() and insertColumns() meth-

ods.2

A spanning item is one that takes up more that one position in the

table. You can create a spanning item by simply passing in the same

item to setItem() for several adjacent rows and columns.

Download tableexample1.rb

table.setItemText(2, 1, "This is a spanning item")

table.setItemJustify(2, 1, FXTableItem::CENTER_X)

spanning_item = table.getItem(2, 1)

table.setItem(2, 2, spanning_item)

table.setItem(2, 3, spanning_item)

table.setItem(3, 1, spanning_item)

table.setItem(3, 2, spanning_item)

table.setItem(3, 3, spanning_item)

In this example, the item at position (2, 1) spans a 3x2 block of cells in

the table. When this part of the table is drawn, none of the interior grid

lines will be drawn. Figure 8.6 shows what the table looks like for this

spanning item.

Modifying the Table Display Options

So far we’ve talked about how you can add to or modify the table data.

An equally important topic is the display of that data, and more specif-

2. There aren’t any methods to prepend rows or columns to a table, but you can use

insertRows() or insertColumns(), passing in a value of zero for the starting row or column.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/tableexample1.rb
http://www.pragprog.com/titles/fxruby

TABLE WIDGET 123

ically the amount of control that the user has over the table’s appear-

ance.

By default, both horizontal and vertical grid lines are displayed so that

the borders of individual table cells are clearly delineated.3 If you’d like

to turn off the display of grid lines, set either or both of the horizontal-

GridShown and verticalGridShown attributes to false.

table.horizontalGridShown = false

All of the cells in a row have the same height, and all of the cells in

a column have the same width. However, different rows can have dif-

ferent row heights, and different columns can have different column

widths. By default, the user can’t change those any of those sizes. You

can always change the row heights and column widths programati-

cally, using methods like setRowHeight() and setColumnWidth(), but to

allow the user to interactively resize them, you must enable either the

TABLE_ROW_SIZABLE flag, the TABLE_COL_SIZABLE flag, or both.

table.tableStyle |= TABLE_COL_SIZABLE

When one or both of these options is enabled, the user can click on the

separator between two items in the row (or column) header and drag it

from side to side to resize the neighboring rows (or columns).

Speaking of those row and column headers, you can also manipulate

their contents to provide (for example) titles for the table columns.

Download tableexample2.rb

table.setColumnText(0, "Ruby 1.8.6")

table.setColumnText(1, "Ruby 1.9")

table.setColumnText(2, "JRuby")

table.setColumnText(3, "Rubinius")

If you want to turn off the display of the row header (a pretty com-

mon request), first change its mode to LAYOUT_FIX_WIDTH, and then set

its width to zero pixels. You can do the same for the column header,

by setting the columnHeaderMode to LAYOUT_FIX_HEIGHT and the column-

HeaderHeight to zero.

Download tableexample1.rb

table.rowHeaderMode = LAYOUT_FIX_WIDTH

table.rowHeaderWidth = 0

table.columnHeaderMode = LAYOUT_FIX_HEIGHT

3. As we’ve already mentioned, the interior grid lines for spanning table items are never

drawn.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/tableexample2.rb
http://media.pragprog.com/titles/fxruby/code/tableexample1.rb
http://www.pragprog.com/titles/fxruby

TABLE WIDGET 124

Figure 8.7: Table Items with Icons

table.columnHeaderHeight = 0

The table shown in Figure 8.6, on page 122 has both its row and column

headers hidden.

You also have some degree of control over the display of individual table

items. Each table item has an associated text string and icon. You can

change these values using the setItemText() and setItemIcon() methods.

Download tableexample2.rb

table.setItemText(5, 3, "Timeout")

table.setItemIcon(5, 3, stopwatch_icon)

table.setItemJustify(5, 3, FXTableItem::CENTER_X)

table.setItemIconPosition(5, 3, FXTableItem::BEFORE)

The table shown in Figure 8.7 includes a number of items with the

text right-justified (the default) as well as others with centered text and

icons.

Finally, the user can edit the contents of a table cell by double-clicking

on that cell, typing some new text, and pressing the Enter key. You

can disable this feature by setting the editable attribute to false.

table.editable = false

So far we’ve been focusing on the display aspects of the FXTable: how

to put data inside it, and how to change its appearance. Like the other

widgets we’ve looked at in this chapter, however, the table is also useful

as an input mechanism. To wrap up this section, we’re going to take a

look at how users can make selections in tables.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/tableexample2.rb
http://www.pragprog.com/titles/fxruby

TABLE WIDGET 125

Managing the Table Selection

The table is somewhat less flexible than the list widgets in terms of its

selection model. It supports only one selection mode, and in that mode

you can select either a single cell, or a contiguous block of cells. You

can’t, for example, select one cell in the upper left corner, and another

cell in the lower right corner, without also selecting all of the cells in

between.

When you click in a cell to begin building up a selection, that cell

becomes the anchor cell. The anchorRow and anchorColumn attributes

for the table contain the row and column indices of the anchor item,

assuming that there is one. If you then hold down the Shift key and

click somewhere else in the table, the selection will be extended from

the anchor cell to the cell that you clicked on. As was the case with the

list widgets, the current item (identified by the currentRow and current-

Column attributes) is just the last cell that you clicked on.

It’s important to recognize that the selection doesn’t “grow” to include

both the previously selected cells and the newly selected cells, unless

they all happen to lie on the same side of the anchor. In other words, the

selection in a table always pivots around the anchor cell. This may be

a little counterintuitive at first (it was to me, anyways). The selStartRow,

selEndRow, selStartColumn and selEndColumn attributes will always con-

tain the starting and ending row and column indices for the entire

selection, when there is one. Note that because of how the table’s selec-

tion model works, one of those endpoints—either (selStartRow, selStartCol-

umn) or (selEndRow, selEndColumn)—will be the anchor cell.

When the user clicks on a row heading, all of the cells in that row will

become selected. Likewise, when the user clicks on a column head-

ing, all of the cells in that column become selected. You can disable

this behavior by setting either or both of the TABLE_NO_ROWSELECT and

TABLE_NO_COLSELECT options.

Disable row and column selections

table.tableStyle |= TABLE_NO_ROWSELECT|TABLE_NO_COLSELECT

The table sends a SEL_COMMAND message when you click on a table

item, and the message data is an FXTablePos instance. An FXTablePos is

just simple data object with row and col accessor methods, for reading

the row and column of the selected table item.

You can, of course, programmatically set modify the selection, although

you normally rely on the user to perform those actions interactively. Try

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/fxruby

TABLE WIDGET 126

as you might, FXTable won’t let you trick it into making a selection that

violates its selection model. For example, the following code will result

in only one cell—the one at (5, 5)—being selected.

table.selectItem(0, 0)

table.selectItem(5, 5)

To select a range of cells, use the selectRange() method.

Select all of the cells between (0, 0) and (5, 5), inclusively

table.selectRange(0, 0, 5, 5)

As was the case for the FXTreeList, the easiest way to keep up with which

table items are selected is to store them in an Array whose contents are

updated in response to SEL_SELECTED and SEL_DESELECTED messages.

Download tableexample2.rb

selected_items = []

table.connect(SEL_SELECTED) do |sender, sel, pos|

item = sender.getItem(pos.row, pos.col)

selected_items << item unless selected_items.include? item

end

table.connect(SEL_DESELECTED) do |sender, sel, pos|

selected_items.delete(sender.getItem(pos.row, pos.col))

end

This concludes our look at the widgets that FXRuby provides for deal-

ing with collections of data, but there are a number of other, similar

widgets in the library that you may want to take a look at as well. For

example, the FXTable widget uses a pair of FXHeader widgets internally

to display its row and column headings, but you can pull that widget

out and use it by itself. The FXFoldingList is a sort of cross between an

FXTreeList and an FXHeader that allows you to associate multiple columns

of data with each item in a tree list. An FXIconList is used by the file dialog

to provide several different kinds of views on a list of files, but you can

also repurpose it to display other kinds of lists. You’ll find documenta-

tion for each of these widgets in the FXRuby API documentation, and

the standard FXRuby source distribution includes examples for each of

them.

Next, we’re going to shift gears and take a look at another one of FOX’s

more complicated widgets, the FXText widget, which you can use to edit

large text documents.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/fxruby/code/tableexample2.rb
http://www.pragprog.com/titles/fxruby

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
FXRuby’s Home Page

http://pragprog.com/titles/fxruby

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fxruby.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/fxruby
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fxruby
www.pragprog.com/catalog

	Contents
	Acknowledgements
	Introduction
	What's in this book?
	Who is this book for?
	How to read this book
	A Word About Versions

	Building an FXRuby Application
	Getting Started With FXRuby
	Installing FXRuby
	Instant Gratification

	The Picture Book Application
	What Picture Book Does
	Application Data
	Let's Code

	Take 1: Display a Single Photo
	Get Something Running
	Create the View
	Construct an Image from a File

	Take 2: Display an Entire Album
	Add Album View
	Display Images as Thumbnails
	Import Photos from Files
	Dynamically Reconfigure the Album View
	Make the Album View Scrollable

	Take 3: Managing Multiple Albums
	Create the Album List View
	Use a Split View
	Switch Between Albums
	Add New Albums
	Serialize the Album List with YAML
	So, What Now?

	FXRuby Fundamentals
	FXRuby Under the Hood
	Event-Driven Programming
	Mouse and Keyboard Events
	Timers, Chores, Signals and Input Events
	Syncing the User Interface with the Application Data
	Using Data Targets for GUI Update
	Responsive Applications with Delayed Layout and Repaint
	Client-Side versus Server-Side Objects
	How Windows Work

	Building Simple Widgets
	Creating Labels and Buttons
	Editing String Data with Text Fields
	Providing Hints with Tooltips and the Status Bar

	Sorting Data with List and Table Widgets
	Displaying Simple Lists with FXList
	Good Things Come in Small Packages: FXComboBox and FXListBox
	Branching Out with Tree Lists
	Table Widget

	Editing Text with The Text Widget
	Adding and Removing Text
	Navigating Through Text
	Searching in Text
	Applying Styles to Text

	Creating Visually Rich User Interfaces
	Using Custom Fonts
	Pointing the Way with Cursors
	Creating and Displaying Images
	Manipulating Image Data
	Creating and Displaying Icons
	One More Thing

	Layout Managers
	Working with Menus and Toolbars
	Dialog Boxes
	Bibliography
	Where to Get Help
	Mailing Lists
	Online Documentation

	Index

