
Extracted from:

Practical Programming
An Introduction to Computer Science Using Python

This PDF file contains pages extracted from Practical Programming, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Jennifer Campbell, Paul Gries, Jason Montojo, and Greg Wilson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-27-1

ISBN-13: 978-1-934356-27-2

Printed on acid-free paper.

P1.0 printing, April 2009

Version: 2009-5-9

http://www.pragprog.com

BUILT -IN FUNCTIONS ON LISTS 89

Function Description

len(L) Returns the number of items in list L

max(L) Returns the maximum value in list L

min(L) Returns the minimum value in list L

sum(L) Returns the sum of the values in list L

Figure 5.5: List functions

5.3 Built-in Functions on Lists

Section 2.6, Function Basics, on page 32 introduced a few of Python’s

built-in functions. Some of these, such as len, can be applied to lists as

well, as can others that we haven’t seen before (see Figure 5.5). Here

they are in action working on a list of the half-lives3 of our plutonium

isotopes:

Download lists/plu4.cmd

>>> half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0]

>>> len(half_lives)

5

>>> max(half_lives)

376000.0

>>> min(half_lives)

14.4

>>> sum(half_lives)

406749.14000000001

We can use the results of the built-in functions in expressions; for

example, the following code demonstrates that we can check whether

an index is in range:

Download lists/plu5.cmd

>>> half_lives = [87.74, 24110.0, 6537.0, 14.4, 376000.0]

>>> i = 2

>>> 0 <= i < len(half_lives)

True

>>> half_lives[i]

6537.0

>>> i = 5

>>> 0 <= i < len(half_lives)

False

3. The half-life of a radioactive substance is the time taken for half of it to decay. After

twice this time has gone by, three quarters of the material will have decayed; after three

times, seven eighths, and so on.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/plu4.cmd
http://media.pragprog.com/titles/gwpy/code/lists/plu5.cmd
http://www.pragprog.com/titles/gwpy

BUILT -IN FUNCTIONS ON LISTS 90

0 1 2 3

0 1

'H' 'He'

original

final

2

'Li'

0

'Be'

Figure 5.6: List concatenation

>>> half_lives[i]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: list index out of range

Like all other objects, lists have a particular type, and Python complains

if you try to combine types in inappropriate ways. Here’s what happens

if you try to “add” a list and a string:

Download lists/add_list_str.cmd

>>> ['H', 'He', 'Li'] + 'Be'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "str") to list

That error report is interesting. It hints that we might be able to con-

catenate lists with lists to create new lists, just as we concatenated

strings to create new strings. A little experimentation shows that this

does in fact work:

Download lists/concat_lists.cmd

>>> original = ['H', 'He', 'Li']

>>> final = original + ['Be']

>>> final

['H', 'He', 'Li', 'Be']

As shown in Figure 5.6, this doesn’t modify either of the original lists.

Instead, it creates a new list whose entries refer to the entries of the

original lists.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/add_list_str.cmd
http://media.pragprog.com/titles/gwpy/code/lists/concat_lists.cmd
http://www.pragprog.com/titles/gwpy

PROCESSING LIST ITEMS 91

So if + works on lists, will sum work on lists of strings? After all, if sum([1,

2, 3]) is the same as 1 + 2 + 3, shouldn’t sum(’a’, ’b’, ’c’) be the same as

’a’ + ’b’ + ’c’, or ’abc’? The following code shows that the analogy can’t

be pushed that far:

Download lists/sum_of_str.cmd

>>> sum(['a', 'b', 'c'])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

On the other hand, you can multiply a list by an integer to get a new

list containing the elements from the original list repeated a certain

number of times:

Download lists/mult_lists.cmd

>>> metals = 'Fe Ni'.split()

>>> metals * 3

['Fe', 'Ni', 'Fe', 'Ni', 'Fe', 'Ni']

As with concatenation, the original list isn’t modified; instead, a new

list is created. Notice, by the way, how we use string.split to turn the

string ’Fe Ni’ into a two-element list [’Fe’, ’Ni’]. This is a common trick in

Python programs.

5.4 Processing List Items

Lists were invented so that we wouldn’t have to create 1,000 variables

to store a thousand values. For the same reason, Python has a for loop

that lets us process each element in a list in turn, without having to

write one statement per element. The general form of a for loop is as

follows:

for variable in list:

block

As we saw in Section 2.6, Function Basics, on page 32, a block is just a

sequence of one or more statements. variable and list are just a variable

and a list.

When Python encounters a loop, it executes the loop’s block once for

each value in the list. Each pass through the block is called an iteration,

and at the start of each iteration, Python assigns the next value in the

list to the specified variable. In this way, the program can do something

with each value in turn.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/sum_of_str.cmd
http://media.pragprog.com/titles/gwpy/code/lists/mult_lists.cmd
http://www.pragprog.com/titles/gwpy

PROCESSING LIST ITEMS 92

For example, this code prints every velocity of a falling object in metric

and imperial units:

Download lists/velocity_loop.cmd

>>> velocities = [0.0, 9.81, 19.62, 29.43]

>>> for v in velocities:

... print "Metric:", v, "m/sec;",

... print "Imperial:", v * 3.28, "ft/sec"

...

Metric: 0.0 m/sec; Imperial: 0.0 ft/sec

Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec

Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec

Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

Here are two other things to notice about this loop:

• In English we would say “for each velocity in the list, print the

metric value, and then print the imperial value.” In Python, we

said roughly the same thing.

• As with function definitions, the statements in the loop block are

indented. (We use four spaces in this book; check with your in-

structors to find out whether they prefer something else.)

In this case, we created a new variable v to store the current value

taken from the list inside the loop. We could equally well have used an

existing variable. If we do this, the loop still starts with the first element

of the list—whatever value the variable had before the loop is lost:

Download lists/velocity_recycle.cmd

>>> speed = 2

>>> velocities = [0.0, 9.81, 19.62, 29.43]

>>> for speed in velocities:

... print "Metric:", speed, "m/sec;",

...

Metric: 0.0 m/sec

Metric: 9.81 m/sec

Metric: 19.62 m/sec

Metric: 29.43 m/sec

>>> print "Final:", speed

Final: 29.43

Either way, the variable is left holding its last value when the loop fin-

ishes. Notice, by the way, that the last print statement in this program

is not indented, so it is not part of the for loop. It is executed after the

for loop has finished and is executed only once.

Nested Loops

We said earlier that the block of statements inside a loop could contain

anything. This means that it can also contain another loop.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/velocity_loop.cmd
http://media.pragprog.com/titles/gwpy/code/lists/velocity_recycle.cmd
http://www.pragprog.com/titles/gwpy

PROCESSING LIST ITEMS 93

This program, for example, loops over the list inner once for each ele-

ment of the list outer:

Download lists/nested_loops.cmd

>>> outer = ['Li', 'Na', 'K']

>>> inner = ['F', 'Cl', 'Br']

>>> for metal in outer:

... for gas in inner:

... print metal + gas

...

...

LiF

LiCl

LiBr

NaF

NaCl

NaBr

KF

KCl

KBr

If the outer loop has No iterations and the inner loop executes Ni times

for each of them, the inner loop will execute a total of NoNi times. One

special case of this is when the inner and outer loops are running over

the same list of length N, in which case the inner loop executes N2 times.

This can be used to generate a multiplication table; after printing the

header row, we use a nested loop to print each row of the table in turn,

using tabs to make the columns line up:

Download lists/multiplication_table.py

def print_table():

'''Print the multiplication table for numbers 1 through 5.'''

numbers = [1, 2, 3, 4, 5]

Print the header row.

for i in numbers:

print '\t' + str(i),

print # End the header row.

Print the column number and the contents of the table.

for i in numbers:

print i,

for j in numbers:

print '\t' + str(i * j),

print # End the current row.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/nested_loops.cmd
http://media.pragprog.com/titles/gwpy/code/lists/multiplication_table.py
http://www.pragprog.com/titles/gwpy

SLICING 94

Here is print_table’s output:

Download lists/multiplication_out.txt

>>> from multiplication_table import *
>>> print_table()

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 9 12 15

4 4 8 12 16 20

5 5 10 15 20 25

Notice when the two different kinds of formatting are done: the print

statement at the bottom of the program prints a new line when outer

loop advances, while the inner loop includes a tab in front of each item.

5.5 Slicing

Geneticists describe C. elegans (nematodes, or microscopic worms)

using three-letter short-form markers. Examples include Emb (embry-

onic lethality), Him (High incidence of males), Unc (Uncoordinated), Dpy

(dumpy: short and fat), Sma (small), and Lon (long). We can thus keep

a list:

Download lists/celegans.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

It turns out that Dpy worms and Sma worms are difficult to distin-

guish from each other, so they are not as useful as markers in complex

strains. We can produce a new list based on celegans_markers, but with-

out Dpy or Sma, by taking a slice of the list:

Download lists/celegans1.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> useful_markers = celegans_markers[0:4]

This creates a new list consisting of only the four distinguishable mark-

ers (see Figure 5.7, on the following page).

The first index in the slice is the starting point. The second index is one

more than the index of the last item we want to include. More rigorously,

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/multiplication_out.txt
http://media.pragprog.com/titles/gwpy/code/lists/celegans.cmd
http://media.pragprog.com/titles/gwpy/code/lists/celegans1.cmd
http://www.pragprog.com/titles/gwpy

SLICING 95

0 1 2 3

'Emb' 'Him' 'Unc' 'Lon'

celegans_markers

'Dpy'

4

1

useful_markers

0

'Sma'

5

32

Figure 5.7: Slicing doesn’t modify lists.

list[i:j] is a slice of the original list from index i (inclusive) up to, but not

including, index j (exclusive).4

The first index can be omitted if we want to slice from the beginning of

the list, and the last index can be omitted if we want to slice to the end:

Download lists/celegans2.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_markers[:4]

['Emb', 'Him', 'Unc', 'Lon']

>>> celegans_markers[4:]

['Dpy', 'Sma']

To create a copy of the entire list, we just omit both indices so that the

“slice” runs from the start of the list to its end:

Download lists/celegans3.cmd

>>> celegans_markers = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

>>> celegans_copy = celegans_markers[:]

>>> celegans_markers[5] = 'Lvl'

>>> celegans_markers

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

>>> celegans_copy

['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

4. Python uses this convention to be consistent with the rule that the legal indices for a

list go from 0 up to one less than the list’s length.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/lists/celegans2.cmd
http://media.pragprog.com/titles/gwpy/code/lists/celegans3.cmd
http://www.pragprog.com/titles/gwpy

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Practical Programming’s Home Page

http://pragprog.com/titles/gwpy

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/gwpy.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/gwpy
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/gwpy
www.pragprog.com/catalog

