
Extracted from:

Practical Programming
An Introduction to Computer Science Using Python

This PDF file contains pages extracted from Practical Programming, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Jennifer Campbell, Paul Gries, Jason Montojo, and Greg Wilson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-27-1

ISBN-13: 978-1-934356-27-2

Printed on acid-free paper.

P1.0 printing, April 2009

Version: 2009-5-9

http://www.pragprog.com

Chapter 4

Modules
Mathematicians don’t prove every theorem from scratch. Instead, they

build their proofs on the truths their predecessors have already estab-

lished. In the same way, it’s vanishingly rare for someone to write all of

a program herself; it’s much more common—and productive—to make

use of the millions of lines of code that other programmers have written

before.

A module is a collection of functions that are grouped together in a

single file. Functions in a module are usually related to each other in

some way; for example, the math module contains mathematical func-

tions such as cos (cosine) and sqrt (square root). This chapter shows you

how to use some of the hundreds of modules that come with Python and

how to create new modules of your own. You will also see how you can

use Python to explore and view images.

4.1 Importing Modules

When you want to refer to someone else’s work in a scientific paper, you

have to cite it in your bibliography. When you want to use a function

from a module, you have to import it. To tell Python that you want

to use functions in the math module, for example, you use this import

statement:

Download modules/import.cmd

>>> import math

http://media.pragprog.com/titles/gwpy/code/modules/import.cmd

IMPORTING MODULES 53

Once you have imported a module, you can use the built-in help func-

tion to see what it contains:1

Download modules/help_math.cmd

>>> help(math)

Help on built-in module math:

NAME

math

FILE

(built-in)

DESCRIPTION

This module is always available. It provides access to the

mathematical functions defined by the C standard.

FUNCTIONS

acos(...)

acos(x)

Return the arc cosine (measured in radians) of x.

asin(...)

asin(x)

Return the arc sine (measured in radians) of x.

...

Great—our program can now use all the standard mathematical func-

tions. When we try to calculate a square root, though, we get an error

telling us that Python is still unable to find the function sqrt:

Download modules/sqrt.cmd

>>> sqrt(9)

Traceback (most recent call last):

File "<string>", line 1, in <string>

NameError: name 'sqrt' is not defined

The solution is to tell Python explicitly to look for the function in the

math module by combining the module’s name with the function’s name

using a dot:

Download modules/sqrt2.cmd

>>> math.sqrt(9)

3.0

1. When you do this interactively, Python displays only a screenful of information at a

time. Press the spacebar when you see the “More” prompt to go to the next page.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/help_math.cmd
http://media.pragprog.com/titles/gwpy/code/modules/sqrt.cmd
http://media.pragprog.com/titles/gwpy/code/modules/sqrt2.cmd
http://www.pragprog.com/titles/gwpy

IMPORTING MODULES 54

floor

math

module

building

module

floor

floor(22.7)

?

Figure 4.1: How import works

The reason we have to join the function’s name with the module’s name

is that several modules might contain functions with the same name.

For example, does the following call to floor refer to the function from

the math module that rounds a number down or the function from the

(completely fictional) building module that calculates a price given an

area (see Figure 4.1)?

Download modules/import_ambiguity.cmd

>>> import math

>>> import building

>>> floor(22.7)

Once a module has been imported, it stays in memory until the program

ends. There are ways to “unimport” a module (in other words, to erase

it from memory) or to reimport a module that has changed while the

program is running, but they are rarely used. In practice, it’s almost

always simpler to stop the program and restart it.

Modules can contain more than just functions. The math module, for

example, also defines some variables like pi. Once the module has been

imported, you can use these variables like any others:

Download modules/pi.cmd

>>> math.pi

3.1415926535897931

>>> radius = 5

>>> print 'area is %6f' % (math.pi * radius ** 2)

area is 78.539816

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/import_ambiguity.cmd
http://media.pragprog.com/titles/gwpy/code/modules/pi.cmd
http://www.pragprog.com/titles/gwpy

IMPORTING MODULES 55

You can even assign to variables imported from modules:

Download modules/pi_change.cmd

>>> import math

>>> math.pi = 3 # would turn circles into hexagons

>>> radius = 5

>>> print 'circumference is', 2 * math.pi * radius

circumference is 30

Don’t do this! Changing the value of π is not a good idea. In fact, it’s

such a bad idea that many languages allow programmers to define

unchangeable constants as well as variables. As the name suggests,

the value of a constant cannot be changed after it has been defined:

π is always 3.14159 and a little bit, while SECONDS_PER_DAY is always

86,400. The fact that Python doesn’t allow programmers to “freeze” val-

ues like this is one of the language’s few significant flaws.

Combining the module’s name with the names of the things it contains

is safe, but it isn’t always convenient. For this reason, Python lets you

specify exactly what you want to import from a module, like this:

Download modules/from.cmd

>>> from math import sqrt, pi

>>> sqrt(9)

3.0

>>> radius = 5

>>> print 'circumference is %6f' % (2 * pi * radius)

circumference is 31.415927

This can lead to problems when different modules provide functions

that have the same name. If you import a function called spell from a

module called magic and then you import another function called spell

from the module grammar, the second replaces the first. It’s exactly

like assigning one value to a variable, then another: the most recent

assignment or import wins.

This is why it’s usually not a good idea to use import *, which brings in

everything from the module at once. It saves some typing:

Download modules/from2.cmd

>>> from math import *
>>> '%6f' % sqrt(8)

'2.828427'

but using it means that every time you add anything to a module, you

run the risk of breaking every program that uses it.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/pi_change.cmd
http://media.pragprog.com/titles/gwpy/code/modules/from.cmd
http://media.pragprog.com/titles/gwpy/code/modules/from2.cmd
http://www.pragprog.com/titles/gwpy

DEFINING YOUR OWN MODULES 56

The standard Python library contains several hundred modules to do

everything from figuring out what day of the week it is to fetching data

from a website. The full list is online at http://docs.python.org/modindex.

html; although it’s far too much to absorb in one sitting (or even one

course), knowing how to use the library well is one of the things that

distinguishes good programmers from poor ones.

4.2 Defining Your Own Modules

Section 2.1, The Big Picture, on page 19 explained that in order to save

code for later use, you can put it in a file with a .py extension. You

can then tell Python to run the code in that file, rather than typing

commands in at the interactive prompt. What we didn’t tell you then is

that every Python file can be used as a module. The name of the module

is the same as the name of the file, but without the .py extension.

For example, the following function is taken from Section 2.6, Function

Basics, on page 32:

Download modules/convert.py

def to_celsius(t):

return (t - 32.0) * 5.0 / 9.0

Put this function definition in a file called temperature.py, and then add

another function called above_freezing that returns True if its argument’s

value is above freezing (in Celsius), and False otherwise:

Download modules/freezing.py

def above_freezing(t):

return t > 0

Congratulations—you have now created a module called temperature:

Download modules/temperature.py

def to_celsius(t):

return (t - 32.0) * 5.0 / 9.0

def above_freezing(t):

return t > 0

Now that you’ve created this file, you can now import it like any other

module:

Download modules/import_temp.cmd

>>> import temperature

>>> temperature.above_freezing(temperature.to_celsius(33.3))

True

CLICK HERE to purchase this book now.

http://docs.python.org/modindex.html
http://docs.python.org/modindex.html
http://media.pragprog.com/titles/gwpy/code/modules/convert.py
http://media.pragprog.com/titles/gwpy/code/modules/freezing.py
http://media.pragprog.com/titles/gwpy/code/modules/temperature.py
http://media.pragprog.com/titles/gwpy/code/modules/import_temp.cmd
http://www.pragprog.com/titles/gwpy

DEFINING YOUR OWN MODULES 57

The __builtins__ Module

Python’s built-in functions are actually in a module named
__builtins__. The double underscores before and after the name
signal that it’s part of Python; we’ll see this convention used
again later for other things. You can see what’s in the module
using help(__builtins__), or if you just want a directory, you can use
dir instead (which works on other modules as well):

Download modules/dir1.cmd

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError',
'BaseException', 'DeprecationWarning', 'EOFError', 'Ellipsis',
'EnvironmentError', 'Exception', 'False', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'KeyError',
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'NameError',
'None', 'NotImplemented', 'NotImplementedError', 'OSError',
'OverflowError', 'PendingDeprecationWarning', 'ReferenceError',
'RuntimeError', 'RuntimeWarning', 'StandardError',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning',
'UserWarning', 'ValueError', 'Warning', 'ZeroDivisionError', '_',
'__debug__', '__doc__', '__import__', '__name__', 'abs', 'all',
'any', 'apply', 'basestring', 'bool', 'buffer', 'callable',
'chr', 'classmethod', 'cmp', 'coerce', 'compile', 'complex',
'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',
'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter',
'float', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash',
'help', 'hex', 'id', 'input', 'int', 'intern', 'isinstance',
'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'long',
'map', 'max', 'min', 'object', 'oct', 'open', 'ord', 'pow',
'property', 'quit', 'range', 'raw_input', 'reduce', 'reload',
'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted',
'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'unichr',
'unicode', 'vars', 'xrange', 'zip']

As of Python 2.5, 32 of the 135 things in __builtins__ are used to
signal errors of particular kinds, such as SyntaxError and ZeroDi-

visionError. There are also functions called copyright, which tells
you who holds the copyright on Python, and license, which dis-
plays Python’s rather complicated license. We’ll meet some of
this module’s other members in later chapters.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/dir1.cmd
http://www.pragprog.com/titles/gwpy

DEFINING YOUR OWN MODULES 58

Figure 4.2: The temperature module in Wing 101

What Happens During Import

Let’s try another experiment. Put the following in a file called experi-

ment.py:

Download modules/experiment.py

print "The panda's scientific name is 'Ailuropoda melanoleuca'"

and then import it (or click Wing 101’s Run button):

Download modules/import_experiment.cmd

>>> import experiment

The panda's scientific name is 'Ailuropoda melanoleuca'

What this shows is that Python executes modules as it imports them.

You can do anything in a module you would do in any other program,

because as far as Python is concerned, it’s just another bunch of state-

ments to be run.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/experiment.py
http://media.pragprog.com/titles/gwpy/code/modules/import_experiment.cmd
http://www.pragprog.com/titles/gwpy

DEFINING YOUR OWN MODULES 59

Let’s try another experiment. Start a fresh Python session, and try

importing the experiment module twice in a row:

Download modules/import_twice.cmd

>>> import experiment

The panda's scientific name is 'Ailuropoda melanoleuca'

>>> import experiment

>>>

Notice that the message wasn’t printed the second time. That’s because

Python loads modules only the first time they are imported. Internally,

Python keeps track of the modules it has already seen; when it is asked

to load one that’s already in that list, it just skips over it. This saves time

and will be particularly important when you start writing modules that

import other modules, which in turn import other modules—if Python

didn’t keep track of what was already in memory, it could wind up

loading commonly used modules like math dozens of times.

Using __main__

As we’ve now seen, every Python file can be run directly from the com-

mand line or IDE or can be imported and used by another program. It’s

sometimes useful to be able to tell inside a module which is happening,

in other words, whether the module is the main program that the user

asked to execute or whether some other module has that honor.

Python defines a special variable called __name__ in every module to

help us figure this out. Suppose we put the following into echo.py:

Download modules/echo.py

print "echo: __name__ is", __name__

If we run this file, its output is as follows:

Download modules/echo.out

echo: __name__ is __main__

As promised, Python has created the variable __name__. Its value is

"__main__", meaning, “This module is the main program.”

But look at what happens when we import echo.py, instead of running

it directly:

Download modules/echo.cmd

>>> import echo

echo: __name__ is echo

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/import_twice.cmd
http://media.pragprog.com/titles/gwpy/code/modules/echo.py
http://media.pragprog.com/titles/gwpy/code/modules/echo.out
http://media.pragprog.com/titles/gwpy/code/modules/echo.cmd
http://www.pragprog.com/titles/gwpy

DEFINING YOUR OWN MODULES 60

The same thing happens if we write a program that does nothing but

import our echoing module:

Download modules/import_echo.py

import echo

print "After import, __name__ is", __name__, "and echo.__name__ is", echo.__name__

which, when run from the command line, produces this:

Download modules/import_echo.out

echo: __name__ is echo

After import, __name__ is __main__ and echo.__name__ is echo

What’s happening here is that when Python imports a module, it sets

that module’s __name__ variable to be the name of the module, rather

than the special string "__main__". This means that a module can tell

whether it is the main program:

Download modules/test_main.py

if __name__ == "__main__":

print "I am the main program"

else:

print "Someone is importing me"

Try it, and see what happens when you run it directly and when you

import it.

Knowing whether a module is being imported or not turns out to allow a

few handy programming tricks. One is to provide help on the command

line whenever someone tries to run a module that’s meant to be used

as a library. For example, think about what happens when you run the

following on the command line vs. importing it into another program:

Download modules/main_help.py

'''

This module guesses whether something is a dinosaur or not.

'''

def is_dinosaur(name):

'''

Return True if the named create is recognized as a dinosaur,

and False otherwise.

'''

return name in ['Tyrannosaurus', 'Triceratops']

if __name__ == '__main__':

help(__name__)

We will see other uses in the following sections and in later chapters.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/import_echo.py
http://media.pragprog.com/titles/gwpy/code/modules/import_echo.out
http://media.pragprog.com/titles/gwpy/code/modules/test_main.py
http://media.pragprog.com/titles/gwpy/code/modules/main_help.py
http://www.pragprog.com/titles/gwpy

DEFINING YOUR OWN MODULES 61

Providing Help

Let’s return to the temperature module for a moment and modify it to

round temperatures off. We’ll put the result in temp_round.py:

Download modules/temp_round.py

def to_celsius(t):

return round((t - 32.0) * 5.0 / 9.0)

def above_freezing(t):

return t > 0

What happens if we ask for help on the function to_celsius?

Download modules/help_temp.cmd

>>> import temp_round

>>> help(temp_round)

Help on module temp_round:

NAME

temp_round

FILE

/home/pybook/modules/temp_round.py

FUNCTIONS

above_freezing(t)

to_celsius(t)

That’s not much use: we know the names of the functions and how

many parameters they need, but not much else. To provide something

more useful, we should add docstrings to the module and the functions

it contains and save the result in temp_with_doc.py:

Download modules/temp_with_doc.py

'''Functions for working with temperatures.'''

def to_celsius(t):

'''Convert Fahrenheit to Celsius.'''

return round((t - 32.0) * 5.0 / 9.0)

def above_freezing(t):

'''True if temperature in Celsius is above freezing, False otherwise.'''

return t > 0

Asking for help on this module produces a much more useful result.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/temp_round.py
http://media.pragprog.com/titles/gwpy/code/modules/help_temp.cmd
http://media.pragprog.com/titles/gwpy/code/modules/temp_with_doc.py
http://www.pragprog.com/titles/gwpy

OBJECTS AND METHODS 62

Download modules/help_temp_with_doc.cmd

>>> import temp_with_doc

>>> help(temp_with_doc)

Help on module temp_with_doc:

NAME

temp_with_doc - Functions for working with temperatures.

FILE

/home/pybook/modules/temp_with_doc.py

FUNCTIONS

above_freezing(t)

True if temperature in Celsius is above freezing, False otherwise.

to_celsius(t)

Convert Fahrenheit to Celsius.

The term docstring is short for “documentation string.” Docstrings are

easy to create: if the first thing in a file or a function is a string that

isn’t assigned to anything, Python saves it so that help can print it later.

You might think that a module this small doesn’t need much documen-

tation. After all, it has only two functions, and their names are pretty

descriptive of what they do. But writing documentation is more than a

way to earn a few extra marks—it’s essential to making software usable.

Small programs have a way of turning into larger and more complicated

ones. If you don’t document as you go along and keep the documenta-

tion in the same file as the program itself, you will quickly lose track of

what does what.

4.3 Objects and Methods

Numbers and strings may have been enough to keep programmers

happy back in the twentieth century, but these days, people expect

to work with images, sound, and video as well. A Python module called

media provides functions for manipulating and viewing pictures; it isn’t

in the standard library, but it can be downloaded for free from http://

code.google.com/p/pygraphics/. (One of the exercises discusses why it

needs a separate download.)

In order to understand how media works, we first have to introduce two

concepts that are fundamental to modern program design. And to do

that, we have to back up and take another look at strings.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/modules/help_temp_with_doc.cmd
http://code.google.com/p/pygraphics/
http://code.google.com/p/pygraphics/
http://www.pragprog.com/titles/gwpy

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Practical Programming’s Home Page

http://pragprog.com/titles/gwpy

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/gwpy.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/gwpy
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/gwpy
www.pragprog.com/catalog

