
Extracted from:

Practical Programming
An Introduction to Computer Science Using Python

This PDF file contains pages extracted from Practical Programming, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Jennifer Campbell, Paul Gries, Jason Montojo, and Greg Wilson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-27-1

ISBN-13: 978-1-934356-27-2

Printed on acid-free paper.

P1.0 printing, April 2009

Version: 2009-5-9

http://www.pragprog.com

VARIABLES AND THE ASSIGNMENT STATEMENT 27

Operator Symbol

** Exponentiation

- Negation

*, /, % Multiplication, division, and remainder

+- Addition and subtraction

Figure 2.5: Arithmetic operators by precedence

precedence than -; in other words, when an expression contains a mix

of operators, * and / are evaluated before - and +. This means that what

we actually calculated was 212 - ((32.0 * 5.0) / 9.0).

We can alter the order of precedence by putting parentheses around

parts of the expression, just as we did in Mrs. Singh’s fourth-grade

class:

Download basic/precedence_diff.cmd

>>> (212 - 32.0) * 5.0 / 9.0

100.0

The order of precedence for arithmetic operators is listed in Figure 2.5.

It’s a good rule to parenthesize complicated expressions even when you

don’t need to, since it helps the eye read things like 1+1.7+3.2*4.4-16/3.

2.4 Variables and the Assignment Statement

Most handheld calculators3 have one or more memory buttons. These

store a value so that it can be used later. In Python, we can do this

with a variable, which is just a name that has a value associated with

it. Variables’ names can use letters, digits, and the underscore symbol.

For example, X, species5618, and degrees_celsius are all allowed, but 777

isn’t (it would be confused with a number), and neither is no-way! (it

contains punctuation).

You create a new variable simply by giving it a value:

Download basic/assignment.cmd

>>> degrees_celsius = 26.0

3. And cell phones, and wristwatches, and...

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/precedence_diff.cmd
http://media.pragprog.com/titles/gwpy/code/basic/assignment.cmd
http://www.pragprog.com/titles/gwpy

VARIABLES AND THE ASSIGNMENT STATEMENT 28

degrees_celsius 26.0

Figure 2.6: Memory model for a variable and its associated value

This statement is called an assignment statement; we say that degrees_

celsius is assigned the value 26.0. An assignment statement is executed

as follows:

1. Evaluate the expression on the right of the = sign.

2. Store that value with the variable on the left of the = sign.

In Figure 2.6, we can see the memory model for the result of the assign-

ment statement. It’s pretty simple, but we will see more complicated

memory models later.

Once a variable has been created, we can use its value in other cal-

culations. For example, we can calculate the difference between the

temperature stored in degrees_celsius and the boiling point of water like

this:

Download basic/variable.cmd

>>> 100 - degrees_celsius

74.0

Whenever the variable’s name is used in an expression, Python uses

the variable’s value in the calculation. This means that we can create

new variables from old ones:

Download basic/assignment2.cmd

>>> difference = 100 - degrees_celsius

Typing in the name of a variable on its own makes Python display its

value:

Download basic/variable2.cmd

>>> difference

74.0

What happened here is that we gave Python a very simple expression—

one that had no operators at all—so Python evaluated it and showed us

the result.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/variable.cmd
http://media.pragprog.com/titles/gwpy/code/basic/assignment2.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable2.cmd
http://www.pragprog.com/titles/gwpy

VARIABLES AND THE ASSIGNMENT STATEMENT 29

It’s no more mysterious than asking Python what the value of 3 is:

Download basic/simplevalue.cmd

>>> 3

3

Variables are called variables because their values can change as the

program executes. For example, we can assign difference a new value:

Download basic/variable3.cmd

>>> difference = 100 - 15.5

>>> difference

84.5

This does not change the results of any calculations done with that

variable before its value was changed:

Download basic/variable4.cmd

>>> difference = 20

>>> double = 2 * difference

>>> double

40

>>> difference = 5

>>> double

40

As the memory models illustrate in Figure 2.7, on the following page,

once a value is associated with double, it stays associated until the pro-

gram explicitly overwrites it. Changes to other variables, like difference,

have no effect.

We can even use a variable on both sides of an assignment statement:

Download basic/variable5.cmd

>>> number = 3

>>> number

3

>>> number = 2 * number

>>> number

6

>>> number = number * number

>>> number

36

This wouldn’t make much sense in mathematics—a number cannot be

equal to twice its own value—but = in Python doesn’t mean “equals to.”

Instead, it means “assign a value to.”

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/simplevalue.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable3.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable4.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable5.cmd
http://www.pragprog.com/titles/gwpy

VARIABLES AND THE ASSIGNMENT STATEMENT 30

difference 20

difference 20

double 40

difference 5

double 40

>>> difference = 20

>>> double = 2 * difference

>>> difference = 5

Figure 2.7: Changing a variable’s value

When a statement like number = 2 * number is evaluated, Python does the

following:

1. Gets the value currently associated with number

2. Multiplies it by 2 to create a new value

3. Assigns that value to number

Combined Operators

In the previous example, variable number appeared on both sides of

the assignment statement. This is so common that Python provides a

shorthand notation for this operation:

Download basic/variable6.cmd

>>> number = 100

>>> number -= 80

>>> number

20

Here is how a combined operator is evaluated:

1. Evaluate the expression to the right of the = sign.

2. Apply the operator attached to the = sign to the variable and the

result of the expression.

3. Assign the result to the variable to the left of the = sign.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/variable6.cmd
http://www.pragprog.com/titles/gwpy

WHEN THINGS GO WRONG 31

Note that the operator is applied after the expression on the right is

evaluated:

Download basic/variable7.cmd

>>> d = 2

>>> d *= 3 + 4

>>> d

14

All the operators in Figure 2.5, on page 27, have shorthand versions.

For example, we can square a number by multiplying it by itself:

Download basic/variable8.cmd

>>> number = 10

>>> number *= number

>>> number

100

which is equivalent to this:

Download basic/variable9.cmd

>>> number = 10

>>> number = number * number

>>> number

100

2.5 When Things Go Wrong

We said earlier that variables are created by assigning them values.

What happens if we try to use a variable that hasn’t been created yet?

Download basic/undefined_var.cmd

>>> 3 + something

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'something' is not defined

This is pretty cryptic. In fact, Python’s error messages are one of its few

weaknesses from the point of view of novice programmers. The first two

lines aren’t much use right now, though they’ll be indispensable when

we start writing longer programs. The last line is the one that tells us

what went wrong: the name something wasn’t recognized.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/variable7.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable8.cmd
http://media.pragprog.com/titles/gwpy/code/basic/variable9.cmd
http://media.pragprog.com/titles/gwpy/code/basic/undefined_var.cmd
http://www.pragprog.com/titles/gwpy

FUNCTION BASICS 32

Here’s another error message you might sometimes see:

Download basic/syntax_error.cmd

>>> 2 +

File "<stdin>", line 1

2 +

^

SyntaxError: invalid syntax

The rules governing what is and isn’t legal in a programming language

(or any other language) are called its syntax. What this message is

telling us is that we violated Python’s syntax rules—in this case, by

asking it to add something to 2 but not telling it what to add.

2.6 Function Basics

Earlier in this chapter, we converted 80 degrees Fahrenheit to Celsius.

A mathematician would write this as f(t)= 5
9 (t-32), where t is the tem-

perature in Fahrenheit that we want to convert to Celsius. To find out

what 80 degrees Fahrenheit is in Celsius, we replace t with 80, which

gives us f (80) = 5
9 (80-32), or 262

3 .

We can write functions in Python, too. As in mathematics, they are used

to define common formulas. Here is the conversion function in Python:

Download basic/fahr_to_cel.cmd

>>> def to_celsius(t):

... return (t - 32.0) * 5.0 / 9.0

...

It has these major differences from its mathematical equivalent:

• A function definition is another kind of Python statement; it de-

fines a new name whose value can be rather complicated but is

still just a value.

• The keyword def is used to tell Python that we’re defining a new

function.

• We use a readable name like to_celsius for the function rather than

something like f whose meaning will be hard to remember an hour

later. (This isn’t actually a requirement, but it’s good style.)

• There is a colon instead of an equals sign.

• The actual formula for the function is defined on the next line. The

line is indented four spaces and marked with the keyword return.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/syntax_error.cmd
http://media.pragprog.com/titles/gwpy/code/basic/fahr_to_cel.cmd
http://www.pragprog.com/titles/gwpy

FUNCTION BASICS 33

Python displays a triple-dot prompt automatically when you’re in the

middle of defining a new function; you do not type the dots any more

than you type the greater-than signs in the usual >>> prompt. If you’re

using a smart editor, like the one in Wing 101, it will automatically

indent the body of the function by the required amount. (This is another

reason to use Wing 101 instead of a basic text editor like Notepad or

Pico: it saves a lot of wear and tear on your spacebar and thumb.)

Here is what happens when we ask Python to evaluate to_celsius(80),

to_celsius(78.8), and to_celsius(10.4):

Download basic/fahr_to_cel_2.cmd

>>> to_celsius(80)

26.666666666666668

>>> to_celsius(78.8)

26.0

>>> to_celsius(10.4)

-12.0

Each of these three statements is called a function call, because we’re

calling up the function to do some work for us. We have to define a

function only once; we can call it any number of times.

The general form of a function definition is as follows:

def function_name(parameters):

block

As we’ve already seen, the def keyword tells Python that we’re defin-

ing a new function. The name of the function comes next, followed by

zero or more parameters in parentheses and a colon. A parameter is

a variable (like t in the function to_celsius) that is given a value when

the function is called. For example, 80 was assigned to t in the func-

tion call to_celsius(80), and then 78.8 in to_celsius(78.8), and then 10.4

in to_celsius(10.4). Those actual values are called the arguments to the

function.

What the function does is specified by the block of statements inside

it. to_celsius’s block consisted of just one statement, but as we’ll see

later, the blocks making up more complicated functions may be many

statements long.

Finally, the return statement has this general form:

return expression

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/fahr_to_cel_2.cmd
http://www.pragprog.com/titles/gwpy

FUNCTION BASICS 34

def to_celsius(t):
 return (t - 32.0) * 5.0 / 9.0

to_celsius(80)

(rest of program)

1

2

3

4

Figure 2.8: Function control flow

and is executed as follows:

1. Evaluate the expression to the right of the keyword return.

2. Use that value as the result of the function.

It’s important to be clear on the difference between a function definition

and a function call. When a function is defined, Python records it but

doesn’t execute it. When the function is called, Python jumps to the

first line of that function and starts running it (see Figure 2.8). When

the function is finished, Python returns to the place where the function

was originally called.

Local Variables

Some computations are complex, and breaking them down into sepa-

rate steps can lead to clearer code. Here, we break down the evaluation

of the polynomial ax2 + bx + c into several steps:

Download basic/multi_statement_block.cmd

>>> def polynomial(a, b, c, x):

... first = a * x * x

... second = b * x

... third = c

... return first + second + third

...

>>> polynomial(2, 3, 4, 0.5)

6.0

>>> polynomial(2, 3, 4, 1.5)

13.0

Variables like first, second, and third that are created within a function

are called local variables. These variables exist only during function

execution; when the function finishes executing, the variables no longer

exist. This means that trying to access a local variable from outside the

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/multi_statement_block.cmd
http://www.pragprog.com/titles/gwpy

BUILT -IN FUNCTIONS 35

function is an error, just like trying to access a variable that has never

been defined:

Download basic/local_variable.cmd

>>> polynomial(2, 3, 4, 1.3)

11.280000000000001

>>> first

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'first' is not defined

>>> a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'a' is not defined

As you can see from this example, a function’s parameters are also local

variables. When a function is called, Python assigns the argument val-

ues given in the call to the function’s parameters. As you might expect,

if a function is defined to take a certain number of parameters, it must

be passed the same number of arguments:4

Download basic/matching_args_params.cmd

>>> polynomial(1, 2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: polynomial() takes exactly 4 arguments (3 given)

The scope of a variable is the area of the program that can access it.

For example, the scope of a local variable runs from the line on which

it is first defined to the end of the function.

2.7 Built-in Functions

Python comes with many built-in functions that perform common oper-

ations. One example is abs, which produces the absolute value of a

number:

Download basic/abs.cmd

>>> abs(-9)

9

4. We’ll see later how to create functions that take any number of arguments.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/gwpy/code/basic/local_variable.cmd
http://media.pragprog.com/titles/gwpy/code/basic/matching_args_params.cmd
http://media.pragprog.com/titles/gwpy/code/basic/abs.cmd
http://www.pragprog.com/titles/gwpy

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Practical Programming’s Home Page

http://pragprog.com/titles/gwpy

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/gwpy.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/gwpy
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/gwpy
www.pragprog.com/catalog

